Определение твердости металлов и сплавов. Техдиагностика-приборы неразрушающего контроля: твердомеры, профилометры, толщиномеры

Для корректной работы запчастей и прочих деталей, надо соблюдать все необходимые параметры изготовления. Именно в связи с этим процесс контроля так важен при производстве. У железных комплектующих существует много важных параметров, таких как вязкость, прочность или пластичность.

В статье мы поговорим о самом важном процессе – определении твердости металлов, расскажем про методы измерения и предложим таблицу для наглядности.

Понятие

Твердость заготовки – особенность материала, благодаря которой железо создает сопротивление при контакте или проникновении в его слои инородного объекта или тела. Оно не должно подвергаться деформации или разрушению при определенных нагрузках.

Данный параметр служит для следующих целей:

    Контроль состояния металла по времени.

    Добыча информации, касательно минимальных и максимальных допустимых значениях заготовки.

    Анализ результатов обработки с применением высоких температур.

Данный критерий показывает, как деталь проявит себя в дальнейшем использовании, а также какой у нее срок годности. Для проведения исследований используется как необработанные элементы, так и готовые запчасти.

Как определить твердость металла: методы

Для его измерения существует много способов. Для получения наиболее точного результата используют сразу несколько методик. Ознакомимся с ними поближе:

    по Бринеллю. Данное исследование заключается в том, что в заготовку вдавливается специальный шарик. После этого, по оставшемуся на железе следу, с помощью математических алгоритмов вычисляют его механический коэффициент.

    по Роквеллу. В данном случае также используется шарик или алмазный конус. Параметр определяется с помощью расчетов или выводится на шкалу.

    по Виккерсу. Данный способ является наиболее аккуратным и точным методом измерения. Для проведения исследований используется пирамидообразный наконечник, выполненный из алмаза.

Единицы измерения твердости металла: какой способ выбрать

При проведении тестов в лаборатории, необходимая методика подбирается в зависимости от характеристик и свойств детали. К таким относят:

    Размер заготовки. Если образец слишком маленький или тонкий, для вычисления необходимого коэффициента используют метод Виккерса.

    Приблизительное значение прочности. В зависимости от используемого материала и его количества принято использовать разные способы. Так например, твердость металла по Бринеллю и Роквеллу вычисляется, если заготовка выполнена из материалов с небольшой твердостью или из легированной стали и прочих сплавов.

    Толщина заготовки. Один из главных факторов – ширина детали в месте проведения замера. Зачастую данный фактор относится к цементным и азотным слоям.

Также отметим, что все необходимые параметры задокументированы межгосударственным стандартом.

Определение твердости металлов по Бринеллю: особенности

Данный тип проверки железных заготовок проводится согласно следующим показателям:

    Продолжительность давления. Для разных типов материала используется разное количество времени. Для стальных и чугунных заготовок – от 10 до 15 секунд, изделия из цветных металлов – 30 сек, в некоторых особых случаях время воздействия может увеличиться до 60-180 с.

    Диаметр шарика. Название данного инструмента – индентор, и в зависимости от типа запчасти принято использовать проверочный инструмент разного диаметра. Величина варьируется от 1 до 10 миллиметров.

    Пиковая величина твердости. При использовании шарика, выполненного из стали – 450 НВ, если используется твердый сплав – 650 НВ.

    Максимальные возможные нагрузки. При измерении прочности используются специальные грузы, которые регулируют силу давления на исследуемую деталь. Минимальное значение такого элемента – 153.2 Н, максимальное – 29420 Н.

Таблица по Бринеллю:

Твердость по Бринеллю D = 10 мм, Р = 3000 кгс), НВ Твердость по Роквеллу (шкала С, Р = 150 кгс), HRC Твердость по Виккерсу, HV Твердость по Шору, HSD
143 - 143 23
149 - 149 24
156 - 155 26
163 2 162 27
170 4 171 28
179 7 178 29
187 9 186 30
197 12 197 31
207 14 208 33
217 17 217 34
229 20 228 36
241 23 240 38
255 25 255 40
269 27 270 42
285 29 285 44
302 31 303 46
321 33 320 49
341 36 344 51
363 39 380 54
388 41 401 57
143 - 143 23
149 - 149 24
156 - 155 26
163 2 162 27
170 4 171 28
179 7 178 29
187 9 186 30
197 12 197 31
207 14 208 33
217 17 217 34
229 20 228 36
241 23 240 38
255 25 255 40
269 27 270 42
285 29 285 44
302 31 303 46
321 33 320 49
341 36 344 51
363 39 380 54
388 41 401 57
415 43 435 61
444 46 474 64
477 49 534 68
514 52 587 73
555 56 650 78
600 60 746 84
653 64 868 91
682 66 941 94
712 68 1022 98
745 70 1116 102
780 72 1220 106

Измерение твердости металлов по методу Бринелля

Для вычисления необходимого параметра данным способом необходимо выполнить следующую последовательность действий:

    Проверьте заготовку на соответствие требованиям межгосударственного стандарта.

    Убедитесь в исправности прибора.

    Подберите подходящий наконечник, задайте необходимое усилие, а также установите грузик задайте время.

    Запустите прибор и начните проверку материала.

    Измерьте диаметр деформации.

    Вычислите необходимую величину.

Для выполнения последнего пункта вам понадобится следующая формула:

  • А – площадь деформации, ее величиной является мм2,
  • Из этого получим:

    • НВ = (0,102*F) / (T*D*h)
    • D – диаметр используемого наконечника, измерения проводятся в мм,
    • h – длина отпечатка вглубь, величина – миллиметры.

    Данная методика отличается повышенной точностью, особенно при проверке мягких материалов. Является одним из основных и самых популярных способов измерения твердости металлов и сплавов.

    Определение твердости металла по Роквеллу

    Данный способ появился еще в начале 20 века и отличается более автоматизированным процессом. Отметим, что данный тип проверок используется чаще всего для заготовок из твердого металла.

    К характеристикам данной методики можно отнести:

      Время проверки – от 10 секунд до минуты.

      Показатель на корпусе приспособления для проверки можно вычислить арифметически.

      Пиковые показатели – HRA 20-800, HRB 20-100, HRC 20-70.

      Инденторы. Выделяют 11 шкал в зависимости от используемого наконечника, чаще всего используют А, В или С.

    Рассмотрим типы наконечников:

      А – конусообразное изделие, выполненное из алмаза. Пиковая величина давления – 60 кгс. Такие приборы используют в основном для проверки тонкого проката.

      В – шарообразные индентор, размер которого составляет 1,588 миллиметра. Чаще всего выполнен из закаленной стали. Его тяжесть составляет 100 кгс. Применим для заготовок из отожженных материалов.

      С – алмазный наконечник, нажатие которого составляет 150 кгс. Использовать данное приспособление следует при проверке закаленных материалов.

    Пробы можно проводить неоднократно. Их количество зависит лишь от размера заготовки. Расстояние между местом проведения измерения должно составлять около четырех диаметров наконечника. Также следует обратить внимание, что данный способ применим не ко всем металлам. Толщина изделия должна быть как минимум в десять раз больше, чем глубина вхождения индентора.

    Таблица по Роквеллу:

    Чтобы выполнить проверку данным способом вам понадобится выполнить следующие действия:

      Проверьте размеры и параметры заготовки.

      Выберите необходимый индентор и укажите нагрузку.

      Зафиксируйте деталь.

      Выполните первичную нагрузку, величина которой должна составить 10 кгс.

      Проведите полную проверку.

      Полученный результат появится на шкале прибора.

    Для проверки результата можно вычислить итог путем математического расчета.

    Если вы используете алмазный индентор, нажатие которого составляет 60-150 кгс:

    • HR = 100 - ((H-h) / 0.002)

    При применении железного шарообразного наконечника с давлением около 100 кгс, следует использовать следующую формулу:

    • HR = 130 - ((H-h) / 0.002)
    • h – длина вдавливания индентора вглубь при первом давлении,
    • Н – аналогичная величина при повторной, полной нагрузке,
    • 0,002 – показатель перемещения наконечника при смещении твердости на одну единицу.

    Данная методика является наиболее простой из всех предложенных, однако отличается не самым точным результатом. Несмотря на это, она позволяет рассчитывать коэффициенты для сплавов из твердых металлов.

    Способы определения твердости металлов: метод Виккерса

    Данный тип проверки является самым простым и точным. Вся процедура заключается во вдавливании алмазного пирамидообразного индентора в корпус заготовки. У данного приема существуют следующие характеристики:

      Наконечник. Используется алмазный индентор под углом 136 градусов.

      Время давления – 10-15 секунд.

      Пиковая величина нагрузки. Для чугуна и изделий из стали – от 5 до 100 кгс, сплавы из меди выдерживают от 2,5 до 50 кгс, заготовки из алюминия – от 1 до 100 кгс.

      Проверяемые материалы. Данный способ подразумевает исследование следующих металлов – стальные сплавы и цветмет с 450-500 НВ, а также, прошедшие химическую и термическую обработку.

    Следуйте инструкции для выполнения проверки данным способом:

      Убедитесь в пригодности заготовки и корректной работе аппаратуры.

      Назначьте максимально допустимое усилие.

      Зафиксируйте запчасть.

      Запустите прибор.

      Получите итоговые числа на экране устройства.

    Если вы хотите проверить результат путем математического анализа, обратитесь к предложенной формуле:

    • HV = 1.8544 * (F / d2)
    • HV – единица твердости металла,
    • F – усилие, измерения производятся в кгс,
    • d – величина отпечатка в миллиметрах.

    Данная методика служит для высокоточных исследований тонких заготовок, а также изделий маленького размера. Способ позволяет получить максимально точную цифру.

    Благодаря собственному производству мы предлагаем оборудование европейского качества по выгодным ценам. Функционал наших приборов повторяет, а во многом даже превосходит импортные системы.

    Для получения подробной информации и консультации обращайтесь к нам по телефону, указанному на сайте. Наш оператор ответит на все возникшие вопросы.

    Определение твердости металлов и сплавов: соответствия между разными типами измерений

    Имея на руках результат одного способа проверки, можно получить данные в других шкалах. Для этого существуют таблицы соответствия. Ознакомимся с ними поближе:

    Данная таблица обладает высокой точностью, так как составлена путем неоднократных исследований.

    В статье мы рассказали про методы измерения твердости металлов и сплавов, рассмотрели их особенности, дали подробные инструкции и предложили таблицу соответствия. Для более точных измерений используйте качественное оборудование. Его вы найдете в нашем каталоге.

    Определение твердости материалов

    Твердостью называется способность материала сопротивляться проникновению в него другого, более твердого материала. Высокой твердостью должны обладать металлорежущие инструменты: резцы, сверла, фрезы, ножовочные полотна и др. Детали машин, как правило, должны иметь среднюю твердость, т.к. при большой твердости их будет трудно обрабатывать на станках, а если они будут мягкими, то на их поверхности могут образоваться вмятины и царапины. Кроме того, при средней твердости прочность удачно сочетается с вязкостью. Твердость материала определяется сравнительно просто и быстро. Поэтому определение твердости – это самый распространенный вид механических испытаний материалов.

    Твердость материала простейшими способами определяется с помощью напильника, зубила или керна. Чем мягче материал, тем легче срезается металл напильником. Так, у закаленных сталей при работе напильником практически не видно царапин на поверхности, а алюминиевые детали легко повреждаются не только напильником, но и просто острым предметом. Мягкие металлы легко перерубаются зубилом при небольших усилиях, а твердые – при значительных.

    Твердость металлов в производственных условиях определяется тремя способами,

    Названными по именам их изобретателей: способы Бринелля, Роквелла и Виккерса.

    Метод Бринелля основан на том, что в металл под нагрузкой Р вдавливают закаленный стальной шарик (рис.2) определенного диаметра D и по величине диаметра отпечатка d судят о его твердости. Твердость по Бринеллю (НВ) определяется из выражения:

    , кгс/мм 2 ,

    где – нагрузка, кгс (кН); – площадь поверхности отпечатка, мм 2 .

    Нагрузка Р, диаметр шарика D и продолжительность выдержки шарика под нагрузкой выбираются в зависимости от вида материала, толщины образца и предполагаемой твердости по таблице 1. После нагружения шарика нагрузкой Р и выдержки под этой нагрузкой измерительной лупой определяют диаметр отпечатка d. По выше приведенной расчетной формуле или диаметру отпечатка в таблице 1 при шарике диаметром 10 мм и нагрузке30 кН (3000 кгс) находят соответствующее число твердости НВ, например, при диаметре отпечатка d = 3,5 мм будет твердость металла НВ 302.

    Твердость НВ, измеренная по методу Бринелля, для ряда металлов, связана эмпирической зависимостью с пределом их прочности при растяжении s В:

    s В =0,35 НВ – для сталей,

    s В =0,45 НВ – для медных сплавов.

    Таблица 1.

    Зависимость режимов испытания (D, Р, t)

    от твердости и толщины испытываемого образца

    К недостаткам метода Бринелля необходимо отнести невозможность испытания металлов, имеющих твердость более НВ 450, или толщину менее 2 мм, появление остаточных следов деформации на поверхности испытанного изделия. При испытании металлов с твердостью более НВ 450 возможна деформация шарика, вследствие чего результаты будут неточными.



    Метод Роквелла основан на том, что в испытуемый образец вдавливается индентор (тело внедрения): алмазный конус с углом при вершине 120° или закаленный стальной шарик диаметром 1,59 мм. Алмазный конус используют для твердых металлов, а шарик – для мягких. Алмазный конус или шарик (рис.3) вдавливают в испытуемый образец под действием двух последовательно прилагаемых нагрузок – предварительной Р 0 , равной 0,1 кН (10 кгс), и основной Р 1 .

    При вдавливании алмаза к нему прилагается общая нагрузка Р = Р 0 +Р 1:

    0,6 кН (60 кгс) – шкала твердомера А;

    или 1,5 кН (150 кгс) – шкала твердомера С.

    При вдавливании шарика прилагается общая нагрузка 1кН (100кгс)– шкала твердомера В.

    Соответственно этим нагрузкам на индикаторе прибора имеются шкалы: черные А и С и красная В. Шкалой А пользуются при измерении твердости изделий с очень твердым поверхностным слоем, полученным посредством химико-термической обработки (цементация, азотирование и др.), а также твердых сплавов с твердостью до HRA 85. Шкалой В пользуются при измерении твердости незакаленных сталей, цветных металлов и сплавов , имеющих твердость до HRB 100. Шкалой С пользуются при измерении твердости закаленных сталей , обладающих твердостью до HRС 67. Числа твердости по Роквеллу измеряются в условных единицах и определяются при вдавливании алмазного конуса по формулам:

    где 100 – число черных делений шкалы С и шкалы А циферблата индикатора прибора, а 130 – число красных делений шкалы В; h 0 – глубина (мм) внедрения алмаза (шарика) под действием предварительной нагрузки; h – глубина (мм) внедрения алмаза (шарика) под действием общей нагрузки Р, замеренной после ее снятия, но с оставлением предварительной нагрузки; 0,002 мм – глубина внедрения алмаза (шарика), соответствующая перемещению стрелки индикатора на одно деление.

    Метод Роквелла отличается простотой и высокой производительностью, практически обеспечивает сохранение качества поверхности после испытаний, позволяет испытывать металлы и сплавы как низкой, так и высокой твердости при толщине изделия (слоя) до 0,8 мм. Этот метод не рекомендуется применять для сплавов с неоднородной структурой (чугуны: серые, ковкие и высокопрочные). Соотношение твердостей материалов, замеренных этими двумя различными способами, видно из таблицы 2.

    Таблица 2.

    Соотношение чисел твердости по Бринеллю и Роквеллу

    Твердость Твердость Твердость
    По Роквеллу По Бринеллю По Роквеллу По Бринеллю По Роквеллу По Бринеллю
    шкала D=10 мм, Р = 3000 кгс шкалы D=10 мм, Р=3000 кгс шкала D=10 мм, Р=3000 кгс
    С Диаметр отпечатка, мм HB C B Диаметр отпечатка, мм НВ В Диаметр отпечатка, мм HB
    HRC HRC HRB HRB
    2,20 3,40 4,60
    2,25 3,45 4,65
    2,30 3,50 4,70
    2,35 3,55 4,75
    2,40 3,60 4,80
    2,45 3,65 4,85
    2,50 3,70 4,90
    2,55 3,75 4,95
    2,60 3,80 5,00
    2,65 3,85 5,05
    2,70 3,90 5,10
    2,75 3,95 5,15
    2,80 4,00 5,20
    2,85 4,05 5,25
    2,90 4,10 5,30
    2,95 4,15 5,35
    3,00 4,20 5,40
    3,05 4,25 5,45
    3,10 4,30 5,50
    3,15 4,35 5,55
    3,20 4,40 5,60
    3,25 4,45 5,65
    3,30 4,50 5,70
    3,35 4,55 5,75


    , кгс/мм 2 ,

    где – угол между противоположными гранями пирамиды при вершине, равный 136°; – среднее арифметическое значение длины обеих диагоналей отпечатка после снятия нагрузки в мм.

    При испытаниях применяют нагрузки, равные 50, 100, 200, 300, 500 и 1000 Н. Возможность применения малых нагрузок в 50 и 100 Н позволяет определять твердость деталей малой толщины и тонких поверхностных слоев, например: цементированных, цианированных и азотированных сталей.

    В табл. 3 представлены варианты обозначения твердости различных материалов.

    Таблица 3.

    Варианты материалов с различной твердостью*

    № варианта Значения твердости материалов
    HB 280 HRA 72 HB 470 HB 780 HRA 74 HV 130 HB 110 HRB 50 HV 530 HB 430 HRC 47 HV 420 HB 477 HRC 54 HV237 HRB 77 HRC 50 HRA 82 HRB 70 HRC 27
    HB 480 HRC 80 HV 280 HB 280 HB 470 HB 130 HV 130 HRA 30 HV 130 HRB 50 HRC 37 HRA 47 HRC 47 HRC 47 HB 477 HRB 67 HRB 67 HRA 77 HRB 77 HRA 82
    HB 780 HB 480 HRC 80 HB 410 HRC 45 HV 530 HB 130 HV 130 HRC 66 HB 170 HRC 54 HRC 37 HRA 47 HV 340 HRA 57 HRB 70 HRB 67 HRB 67 HRB 77 HV 230
    HRC 53 HB210 HV 280 HRC 51 HV 234 HV 430 HRC 35 HB 130 HRA 70 HRC 43 HB 630 HRB 75 HRC 37 HV 313 HRB 327 HRA 85 HV 150 HRA 77 HB 260 HRC 57
    HB 170 HRA 67 HRC 54 HRC 51 HV 434 HRA 60 HRC 76 HV 150 HRA 70 HRC 56 HV 330 HB 700 HB 437 HV 313 HB 210 HRC 75 HV 310 HRA 57 HB 260 HRC 29

    Числа твердости по Виккерсу и по Бринеллю имеют одинаковую размерность и для материалов твердостью до НВ 450 практически совпадают. Вместе с тем измерения пирамидой дают более точные значения для материалов с высокой твердостью, чем измерения с использованием шарика или конуса. Алмазная пирамида имеет большие угол в вершине и диагональ ее отпечатка, что повышает точность измерения отпечатка даже при проникновении пирамиды на небольшую глубину. Диагональ отпечатка измеряют с помощью измерительного микроскопа, вмонтированного в твердомер Виккерса.

    В настоящее время имеются более удобные (портативные, с цифровой индикацией твердости по Бринеллю и Роквеллу, с относительно небольшой погрешностью измерений) в работе твердомеры. Так, твердомер динамический ЭЛИТ-2 измеряет твердость стальных изделий по скорости отскока бойка от поверхности, а твердомер ультразвуковой УЗИТ-3 - методом измерения акустического импеданса при внедрении магнитостриктора с алмазом Виккерса в поверхность изделия.

    Таганрогский Государственный Радиотехнический Университет

    Кафедра Механики

    Реферат

    Выполнил:

    Студент гр. Р-99

    Андриевский В. А.

    Проверил:

    доцент кафедры механики

    Шаповалов Р. Г.

    Таганрог 2001

    Методы определения твердости металлов

    Одной из наиболее распространенных характеристик, определяющих качество металлов и сплавов, возможность их применения в различных конструкциях и при различных условиях работы, является твердость. Испытания на твердость производятся чаще, чем определение других механических характеристик металлов: прочности, относительного удлинения и др.

    Твёрдостью материала называют способность оказывать сопротивление механическому проникновению в его поверхностный слой другого твёрдого тела. Для определения твёрдости в поверхность материала с определённой силой вдавливается тело (индентор), выполненное в виде стального шарика, алмазного конуса, пирамиды или иглы. По размерам получаемого на поверхности отпечатка судят о твёрдости материала. В зависимости от способа измерения твёрдости материала, количественно её характеризуют числом твёрдости по Бринелю (НВ), Роквеллу (HRC) или Виккерсу (HV) .

    Указанные механические характеристики связаны между собой, поэтому их конкретные значения могут быть найдены расчётным путём на основе данных о твёрдости с помощью формул, полученных для конкретного материала с определённой термообработкой. Так, например, предел выносливости на изгиб сталей с твёрдостью 180-350 НВ равен примерно 1,8 НВ, с твёрдостью 45-55 HRC - 18 HRC+150, связь предела выносливости с пределом прочностистали описывается соотношениями:

    Конкретным образцам конструкционных материалов, а также выполненным из них изделиям, присуща индивидуальность прочностных и упругих характеристик. Разброс их значений для различных образцов, выполненных из одного и того же материала, обусловлен статистической природой прочности твёрдых тел, различием структур внешне одинаковых образцов. Из-за неопределённости реальных механических характеристик материала, неопределённости некоторых внешних нагрузок, действующих на технический объект, погрешности расчётов для обеспечения безопасной работы проектируемых конструкций должны быть приняты соответствующие проектному этапу обеспечения надёжности меры предосторожности. В качестве такой меры используется понижение в n раз относительно опасного напряжения материала (предела прочности, предела текучести, предела выносливости или предела пропорциональности) величины максимально допускаемых напряжений, используемых в условии прочности. Величина n получила название нормативного коэффициента запаса прочности , который выбирается по таблице или рассчитывается как произведение

    n = n 1 * n 2 * n 3 ,

    где n 1 -учитывает среднюю точность определения напряжений, n 2 -учитывает неопределённость механических характеристик материала, n 3 -учитывает среднюю

    степень ответственности проектируемой детали.

    Существует несколько способов измерения твердости, различающихся по характеру воздействия наконечника. Твердость можно измерять вдавливанием индентора (способ вдавливания), ударом или же по отскоку наконечника – шарика. Твердость, определенная царапаньем, характеризует сопротивление разрушению, по отскоку – упругие свойства, вдавливанием сопротивление пластической деформации. В зависимости от скорости приложения нагрузки на индентор твердость различают статическую (нагрузка прикладывается плавно) и динамическую (нагрузка прикладывается ударом).

    Широкое распространение испытаний на твердость объясняется рядом их преимуществ перед другими видами испытаний:

      простота измерений, которые не требуют специального образца и могут быть выполнены непосредственно на проверяемых деталях;

      высокая производительность;

      измерение твердости обычно не влечет за собой разрушения детали, и после измерения ее можно использовать по своему назначению;

      возможность ориентировочно оценить по твердости другие характеристики металла, в первую очередь предел прочности.

    Так, например, зная твердость по Бринеллю (HB), можно определить предел прочности на растяжение (временное сопротивление).

    ,

    где k – коэффициент, зависящий от материала;

    k = 0,34 – сталь HB 120 … 175;

    k = 0,35 – сталь HB 175 … 450;

    k = 0,55 – медь, латунь и бронза отоженные;

    k = 0,33 … 0,36 – алюминий и его сплавы.

    Наибольшее применение получило измерение твердости вдавливанием в испытываемый металл индентора в виде шарика, конуса и пирамиды (соответственно методы Бринелля, Роквелла и Виккерса). В результате вдавливания достаточно большой нагрузкой поверхностные слои металла, находящиеся под наконечником и вблизи него, пластически деформируются. После снятия нагрузки остается отпечаток. Величина внедрения наконечника в поверхность металла будет тем меньше, чем тверже испытываемый материал.

    Таким образом под твердостью понимают сопротивление материала местной пластической деформации, возникающей при внедрении в него более твердого тела – индентора.

    Твёрдость металлов

    сопротивление металлов вдавливанию. Т. м. не является физической постоянной, а представляет собой сложное свойство, зависящее как от прочности и пластичности, так и от метода измерения. Т. м. характеризуется числом твёрдости. Наиболее часто для измерения Т. м. пользуются методом вдавливания. При этом величина твёрдости равна нагрузке, отнесённой к поверхности отпечатка, или обратно пропорциональна глубине отпечатка при некоторой фиксированной нагрузке. Отпечаток обычно производят шариком из закалённой стали (методы Бринелля, Роквелла), алмазным конусом (метод Роквелла) или алмазной пирамидой (метод Виккерса, измерение микротвёрдости (См. Микротвёрдость)). Реже пользуются динамическими методами измерения, в которых мерой твёрдости является высота отскакивания стального шарика от поверхности изучаемого металла (например, метод Шора) или время затухания колебания маятника, опорой которого является исследуемый металл (метод Кузнецова - Герберта - Ребиндера). Получает распространение метод измерения Т. м. с помощью ультразвуковых колебаний, в основе которого лежит измерение реакции колебательной системы (изменения её собственной частоты) на твёрдость испытуемого металла. Числа твёрдости указываются в единицах НВ (метод Бринелля), HV (метод Виккерса), HR (метод Роквелла), где Н от английского hardness - твёрдость. Поскольку при определении твёрдости методом Роквелла пользуются как стальным шариком, так и алмазным конусом, часто вводятся дополнительные обозначения - В (шарик), С и А (конус, разные нагрузки). По специальным таблицам или диаграммам можно осуществлять пересчёт чисел твёрдости (например, число твёрдости по Роквеллу можно пересчитать на число твёрдости по Бринеллю). Выбор метода определения твёрдости зависит от исследуемого материала, размеров и формы образца или изделия и др. факторов.

    Твёрдость весьма чувствительна к изменению структуры металла. При изменении температуры или после различных термических и механических обработок величина Т. м. и сплавов меняется в том же направлении, что и предел текучести; поэтому часто при контроле изменения механических свойств после различных обработок металл характеризуют твёрдостью, которая измеряется проще и быстрее. Измерениями микротвёрдости пользуются при изучении механических свойств отдельных зёрен, а также структурных составляющих (См. Структурная составляющая) сложных сплавов.

    Для относительной оценки жаропрочности металлических материалов иногда пользуются так называемой длительной твёрдостью (или микротвёрдостью), измерение которой производят при повышенной температуре длительное время (минуты, часы).

    Лит.: Геллер Ю. А., Рахштадт А. Г., Материаловедение, 4 изд., М., 1975, с. 167- 90.

    В. М. Розенберг.


    Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

    Смотреть что такое "Твёрдость металлов" в других словарях:

      Сопротивление материала вдавливанию или царапанию. Т. не является физической постоянной, а представляет собой сложное свойство, зависящее как от прочности и пластичности материала, так и от метода измерения. Подробнее см. Твёрдость… …

      У этого термина существует и другое значение, см. Твёрдость по Шору. При этом следует понимать, что хотя в другом значении этот метод так же является методом измерения твёрдости, оба метода предложены одним и тем же автором, имеют совпадающие… … Википедия

      У этого термина существуют и другие значения, см. Твёрдость (значения). Твёрдость это способность материала сопротивляться проникновению в него другого, более твёрдого тела индентора во всем диапазоне нагружения: от момента касания с… … Википедия

      Сплавы металлов, металлические сплавы, твёрдые и жидкие системы, образованные главным образом сплавлением двух или более металлов, а также металлов с различными неметаллами. Термин «С.» первоначально относился к материалам с металлическими… … Большая советская энциклопедия

      Металл в термопечи Термическая обработка металлов и сплавов процесс тепловой обработки металлических изделий, целью которого является изменение структуры и свойств в заданном направлении … Википедия

      Твёрдость по Роквеллу - Роквелла метод [по имени американского металлурга С.Роквелла (S.Rockwell), разработавшего этод метод] способ определения твёрдости материалов (главным образом металлов) вдавливанием в испытываемую поверхность алмазного индентора с углом при… … Металлургический словарь - Методы измерения твёрдости по Шору: Твёрдость по Шору (Метод вдавливания) для низкомодульных материалов (полимеров). Твёрдость по Шору (Метод отскока) для высокомодульных материалов (металлов) … Википедия

      Отпуск металлов, вид термической обработки, заключающийся в нагреве закалённого сплава до температуры ниже нижней критической точки, выдержке и последующем охлаждении. Термин «О.» применяют главным образом к сталям. Процессы распада… … Большая советская энциклопедия

    Твердость - это сопротивление материала проникновению в его поверхность стандартного тела (индентора), не деформирующегося при испытании.

    Это неразрушающий метод контроля, основной способ оценки качества термической обработки изделия. О твердости судят либо по глубине проникновения индентора (метод Роквелла), либо по величине отпечатка от вдавливания (методы Бринелля , Виккерса , микротвердости).

    Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость. Схемы испытаний представлены на рис. 1.

    Рис. 1. Схемы определения твердости: а - по Бринеллю; б - по Роквеллу; в - по Виккерсу

    В результате вдавливания с достаточно большой нагрузкой поверхностные слои материала, находящиеся под наконечником и вбли-зи него, пластически 5 деформируются. После снятия нагрузки остается отпечаток. Особенность происходящей при этом деформа-ции заключается в том, что она протекает только в небольшом объеме, окруженном недеформированным материалом.

    В таких условиях возникают главным образом касательные напряжения, а доля растягивающих напряжений незначительна по сравнению с получаемыми при других видах механических испытаний (на растяжение, изгиб, кручение, сжатие). Поэтому при измерении твердости вдавливанием пластиче-скую деформацию испытывают не только пластичные, но также металлы (например, чугун), которые при обычных механических испытаниях (на растяжение, сжатие, кручение, изгиб) разрушаются практически без пластической деформа-ции.

    Таким образом, твердость характеризует сопротивление пласти-ческой деформации и представляет собой механическое свойство ма-териала, отличающееся от других его механических свойств, способом измерения.

    Преимущества измерения твердости следующие:

    1. Между твердостью пластичных металлов, определяемой спо-собом вдавливания, и другими механическими свойствами (главным образом пределом прочности), существует количественная зависимость. Так, сосредоточенная пла-стическая деформация металлов (при образовании шейки) аналогична деформации, создавае-мой в поверхностных слоях металла при измерении твердости вдавли-ванием наконечника.

    Подобная количественная зависимость не наблюдается для хруп-ких материалов, которые при испытаниях на растяжение (или сжа-тие, изгиб, кручение) разрушаются без заметной пластической дефор-мации, а при измерении твердости получают пластическую деформа-цию. Однако в ряде случаев и для этих металлов (например, серых чугунов) наблюдается качественная зависимость между пределом прочности и твердостью; возрастанию твердости обычно соответствует увеличение предела прочности на сжатие.


    По значениям твердости можно определять также и некоторые пластические свойства металлов. Твердость, определенная вдавливанием, характеризует также предел выносливости некоторых металлов, в частности меди, дуралюмина и сталей в отожженном состоянии.

    2. Измерение твердости по технике выполнения значительно проще, чем определение прочности, пластичности и вязкости. Испытания твердости не требуют изготовления специальных образцов и выполняются непосредственно на проверяемых деталях после за-чистки на поверхности ровной горизонтальной площадки, а иногда даже и без такой подготовки.

    Измерения твердости выполняются быстро.

    3. Измерение твердости обычно не влечет за собой разрушения проверяемой детали, и после измерения её можно использовать по своему назначению, в то время как для определения прочности, пластичности и вязкости необходимо изготовление специальных об-разцов.

    4. Твердость можно измерять на деталях небольшой толщины, а также в очень тонких слоях, не превышающих (для некоторых спо-собов измерения твердости) десятых долей миллиметра, или в микро-объемах металла; в последнем случае измерения проводят способом микротвердости. Поэтому многие способы измерения твердости пригодны для оценки различных по структуре и свойствам слоев металла, например поверхностного слоя цементованной, азотирован-ной или закаленной стали, имеющей разную твердость по сечению детали. Методом определения микротвердости можно также измерять твердость отдельных составляющих в сплавах.

    Следует различать два способа определения твердости вдавлива-нием: измерение макротвёрдости и измерение микротвер-дости.

    Измерение макротвердости отличается тем, что в испытуемый материал вдавливается тело, прони-кающее на сравнительно большую глубину, ависящую от величины прилагаемой нагрузки и свойств металла. Кроме того, во многих испытаниях вдавливается тело значительных размеров, например стальной шарик диаметром 10 мм, в результате чего в де-формируемом объёме оказываются представленными все фазы и струк-турные составляющие сплава. Измеренная твердость в этом случае характеризует твердость всего испытуемого материала.

    Выбор формы, размеров наконечника и величины нагрузки зави-сит от целей испытания, структуры, ожидаемых свойств, состояния поверхности и размеров испытуемого образца. Если металл имеет гетерогенную структуру с крупными выделе-ниями отдельных структурных составляющих, различных по свой-ствам (например, серый чугун, цветные подшипниковые сплавы), то для испытания твердости следует выбирать шарик большого диа-метра.

    Если же металл имеет сравнительно мелкую и однородную структуру, то малые по объёму участки испытуемого металла могут быть достаточно характерными для оценки его твёрдости. В этих случаях испытания можно про-водить вдавливанием тела меньшего размера, например алмазного конуса или пирамиды, и на меньшую глубину, и, следовательно, при небольшой нагрузке.

    При испытании металлов с высокой твердостью, например зака-ленной или низкоотпущенной стали, приведенное условие является даже обязательным, поскольку вдавливание стального шарика или алмаза с большой нагрузкой может вызвать деформацию шарика или скалывание алмаза.

    Однако значительное снижение нагрузки нежелательно, так как это приведет к резкому уменьшению деформируемого объёма и может дать значения, не характерные для основной массы металла. Поэтому величины нагрузок и размеры получаемых в материалах отпечатков не должны быть меньше некоторых определенных пределов.

    Измерение микротвёрдости имеет целью определить твёрдость отдельных зерен, фаз и структурных составляющих сплава (а не «усредненную» твёрдость, как при измерении макротвёрдости). В данном случае объём, деформируемый вдавливанием, должен быть меньше объёма (площади) измеряемого зерна. Поэтому прилагаемая нагрузка выбирается небольшой. Кроме того, микротвёрдость изме-ряют для характеристики свойств очень малых по размерам деталей.

    Значительное влияние на результаты испытаний твёрдости оказы-вает состояние поверхности измеряемого материала. Если поверх-ность неровная — криволинейная или с выступами, то отдельные уча-стки в различной степени участвуют в сопротивлении вдавливанию и деформации, что приводит к ошибкам в измерении. Чем меньше нагрузка для вдавливания, тем более тщательно должна быть подго-товлена поверхность. Она должна представлять шлифованную гори-зонтальную площадку, а для измерения микротвердости — полиро-ванную.

    Измеряемая поверхность должна быть установлена горизон-тально, т. е. перпендикулярно действию вдавливаемого тела. Проти-воположная сторона образца также должна быть зачищена, и не иметь окалины, так как последняя при нагружении образца сминается, что искажает результаты измерения.

    Для приблизительнойердости удобно пользоваться шкалой Мооса - набором из 10 минералов, расположенных по возрастанию твердости:

    Тальк - 1 Полевой шпат - 6

    Гипс - 2 Кварц - 7

    Кальцит - 3 Топаз - 8

    Флюорит - 4 Корунд - 9

    Апатит - 5 Алмаз - 10

    Метод измерения твёрдости вдавливанием шарика (твердость по Бринеллю)

    Этот способ универсальный и используется для определения твердости практически всех материалов.

    В материал вдавливается стальной шарик, и значения твердости определяют по величине поверхности отпечатка, оставляемого шари-ком. Шарик вдавливают с помощью пресса.

    Рис.2. Схема прибора для получе-ния твердости вдавливанием шарика (измерение по Бринеллю): 1 - столик для центровки образца; 2 — маховик; 3 — грузы; 4 — шарик; 5 — электродвигатель.

    Испытуемый образец устанавливают на столике 1 в ниж-ней части неподвижной станины пресса (рис. 2), зашлифованной поверхностью кверху. Поворотом вручную маховика 2по часовой стрелке столик поднимают так, чтобы шарик мог вдавиться в испытуемую поверхность. В прессах с электродвигателем вращают маховик 2 до упора и нажатием кнопки включают двигатель 5.

    Последний перемещает коромысло и постепенно вдавливает шарик под действием нагрузки, сообщаемой привешенным к коро-мыслу грузом. Эта нагрузка дейст-вует в течение определенного вре-мени, обычно 10-60 с, в зависимо-сти от твердости измеряемого мате-риала, после чего вал двигателя, вращаясь в обратную сторону, соответственно перемещает коромысло и снимает нагрузку. По-сле автоматического выключения двигателя, поворачивая маховик 2против часовой стрелки, опускают столик прибора и затем снимают об-разец.

    В образце остается отпечаток со сферической поверхностью (лун-ка). Диаметр отпечатка измеряют лупой, на окуляре которой нанесена шкала с делениями, соответствующими десятым долям миллиметра. Диаметр отпечатка змеряют с точностью до 0,05 мм (при вдавливании шарика диаметром 10 и 5 (мм) в двух взаимно пер-пендикулярных направлениях; для определения твердости следует принимать среднюю из полученных величин.

    Число твердости по Бринеллю НВ вычисляют по уравнению:

    где Р — нагрузка на шарик, кг · с (1кг · с - 0,1 Мпа); D — диаметр вдавливаемого шарика, мм; d — диаметр отпечатка, мм. Получаемое число твердости при прочих равных условиях тем выше, чем меньше диаметр отпечатка.

    Однако получение постоянной и одинаковой зависимости между Р и d, необходимое для точного определения твердости, достигается только при соблюдении определенных условий. При вдавливании шарика на разную глубину, т. е. с разной нагрузкой для одного и того же мате-риала, не соблюдается закон подобия между получаемыми диамет-рами отпечатка.

    Наибольшие отклонения наблюдаются, если шарик вдавливается с малой нагрузкой и оставляет отпечаток небольшого диаметра или вдавливается с очень большой нагрузкой и оставляет отпечаток с диаметром близким к диа-метру шарика. Поэтому твердость материалов измеряют при постоянном соотно-шении между величиной нагрузки Ри квадратом диаметра шарика D 2 . Это соотношение должно быть различным для материалов разной твер-дости.

    В процессе вдавливания наряду с пластической деформацией измеряемого материала происходит также упругая деформация вдавли-ваемого шарика. Величина этой деформации, искажающей результаты определения, возрастает при измерении твердых материалов. По-этому испытания вдавливанием шарика ограничивают измерением металлов небольшой и средней твердости (для стали с твердостью не более НВ = 450).

    Известное влияние оказывает также длительность выдержки металла под нагрузкой. Легкоплавкие металлы (свинец, цинк, баб-биты), имеющие низкую температуру рекристаллизации, испытывают пластическую деформацию не только в момент вдавливания, но и в течение некоторого времени после приложения нагрузки. С увели-чением выдержки под нагрузкой пластическая деформация этих металлов практически стабилизируется.

    Для металлов с высокими температурами плавления влияние продолжительности выдержки под нагрузкой незначительно, что позво-ляет применять более короткие выдержки (10-30 с).

    При измерении твердости шариком определенного диаметра и с установленными нагрузками на практике пользуются заранее составленными таблицами, указывающими число НВ в зависимости от диа-метра отпечатка и соотношения между нагрузкой Ри поверхностью отпечатка F. При указании твердости НВ иногда отмечают принятые нагрузку и диаметр шарика.

    Между пределом прочности и числом твердости НВ различных ме-таллов существует следующая зависимость:

    Сталь с твердостью НВ :

    120-175 s b » 0,34 HВ

    175-450 s b » 0,35 HВ

    Медь, латунь, бронза :

    Отожженная s b » 0,55 HВ

    Наклепанная s b » 0,40 HВ

    Алюминий и алюминиевые сплавы с твер-достью НВ :

    20 - 45 s b » (0,33 - 0,36) НВ

    Дуралюмин :

    Отожженный s b » 0,36 HВ

    После закалки и старения s b » 0,35 HВ