Основные свойства генетического кода и их значение. Биосинтез белка и нуклеиновых кислот

1. Код триплетен.

2. Код вырожден.

3. Код однозначен.

4. Код коллинеарен.

5. Код неперекрываем.

6. Код универсален.

1) Код триплетен. 3 расположенных рядом нуклеотида несут информацию об одном белке. Таких триплетов может быть 64 (в этом проявляется избыточность генетического кода), но только 61 из них несет информацию о белке (кодоны). 3 триплета называются антикодонами, являются стоп-сигналами, на которых останавливается синтез белка.

2) Код вырожден. Одну аминокислоту могут кодировать несколько кодонов.

3) Код однозначен. Каждый кодон шифрует только одну аминокислоту.

4) Код коллинеарен. последовательность нуклеотидов в гене соответствует последовательности аминокислот в белке.

5) Код неперекрываем. один и тот же нуклеотид не может входить в состав двух разных кодонов, считывание идет непрерывно, подряд, вплоть до стоп-кодона. В коде отсутствуют «знаки препинания».

6) Код универсален. Одинаков для всех живых существ, т.е. один и тот же триплет кодирует одну и ту же аминокислоту.

61. В каких случаях изменение последовательности нуклеотидов в гене не влияет на структуру и функции кодирующего белка?

1) если в результате замены нуклеотида возникает другой кодон, кодирующий ту же аминокислоту;

2) если кодон, образовавшийся в результате замены нуклеотида, кодирует другую аминокислоту, но со сходными химическими свойствами, не изменяющую структуру белка;

3) если изменения нуклеотидов произойдут в меж генных или нефункционирующих участках ДНК.

№62. Репликация ДНК.

Краткий обзор:

Реплика́ция - процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15-20 различных белков, называемый реплисомой.

К моменту деления ДНК должна быть реплицирована полностью и только один раз. Репликация проходит в три этапа:

1. Инициация репликации (ДНК-полимераза начинает репликацию ДНК, связываясь с отрезком цепи нуклеотидов. В определённом сайте (точка начала репликации) происходит локальная денатурация ДНК, цепи расходятся и образуются две репликативные вилки, движущиеся в противоположных направлениях.).

2. Элонгация (этап биосинтеза молекул нуклеиновых кислот, заключающийся в последовательном присоединении мономеров (нуклеотидов) к растущей цепи ДНК).

3. Терминация репликации (завершающий этап, происходит в тот момент, когда между фрагментами Оказаки происходит заполнение пустых участков нуклеотидами).

Основная часть:

Поскольку ДНК является молекулой наследственности, то для реализации этого качества она должна точно копировать саму себя и таким образом сохранять всю имеющуюся в исходной молекуле ДНК информацию в виде определенной последовательности нуклеотидов. Это обеспечивается за счет особого процесса, предшествующего делению любой клетки организма, который называется репликацией ДНК - процесса синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК .

Репликация ДНК происходит в три этапа:

1. Инициация . Заключается в том, что специальные ферменты -ДНК хеликазы, раскручивающие двуцепочечную спираль ДНК, разрывают слабые водородные связи, которые соединяют между собой нуклеотиды двух цепей. В результате цепи ДНК разъединяются, и из каждой цепи «торчат» свободные азотистые основания (возникновение так называемой вилки репликации).

2. Элонгация (этап биосинтеза молекул нуклеиновых кислот, заключающийся в последовательном присоединении мономеров (нуклеотидов) к растущей цепи ДНК). Каждая из двух нитей ДНК служит матрицей для синтеза новой нити. Так как родительские нити антипараллельны, то непрерывная репликация ДНК происходит только на одной нити, которая называется ведущей (лидирующей). Особый фермент ДНК-полимераза начинает двигаться вдоль свободной цепи ДНК от 5"- к З"-концу, помогая присоединиться свободным нуклеотидам, постоянно синтезируемым в клетке, к З"-концу вновь синтезируемой цепи ДНК. Синтез новой цепи на отстающей нити требует постоянного образования новых затравок (т.н. праймеров - коротких фрагментов нуклеиновой кислоты, используемых ДНК- полимеразами для инициации синтеза ДНК) для начала репликации и осуществляется небольшими сегментами по 1000-2000 нуклеотидов в каждом (фрагменты Оказаки). Затравки деградируют после завершения синтеза следующего фрагмента Оказаки. Образованные соседние фрагменты ДНК соединяются ДНК-лигазой. Топоизомераза удаляет супервитки спирали, хеликаза обеспечивает раскручивание двойной спирали, белок SSB обеспечивает стабильность одноцепочечной ДНК.

3. Терминация (завершение) репликации происходит тогда, когда пробелы между фрагментами Оказаки заполнятся нуклеотидами (при участии ДНК-лигазы) с образованием двух непрерывных двойных цепей ДНК и когда встретятся две репликативные вилки. Затем происходит закручивание синтезированных ДНК с образованием суперспиралей.

63. Опишите последовательность процессов, происходящих при репликации ДНК у эукариот

Механизмы репликации ДНК прокариот и эукариот существенно различаются в том отношении, что во втором случае синтез ведущей и отстающей цепей ДНК осуществляют разные ДНК-полимеразы (альфа и дельта соответственно), тогда как у E. coli обе цепи ДНК синтезируются димером ДНК-полимеразы III . ДНК-полимераза альфа проводит инициацию синтеза ведущей цепи в точках начала репликации, а ДНК-полимераза дельта осуществляет циклические реинициации синтеза фрагментов Оказаки, по-видимому, распознавая наличие 5"-концевого нуклеотида очередного праймера с последующей диссоциацией от матричной ДНК и присоединением к ней для реинициации синтеза следующего фрагмента Оказаки.

Созревание фрагментов Оказаки у эукариот требует удаления РНК-затравок с помощью 5"->3"-экзонуклеазы (белковые факторы FEN-1 или MF-1) и РНКазы H1 , а также ковалентного соединения фрагментов друг с другом под действием ДНК-лигазы I .

В настоящее время не известно, что именно служит пусковым сигналом для начала репликации ДНК в S фазе. Инициирующее событие, после которого начинается синтез ДНК, происходит в определенных местах, называемых " репликационные вилки ". Во время S фазы кластеры репликационных вилок активируются одновременно во всех хромосомах.

Положение участков начала репликации в генах может иметь важное биологическое значение. Тот факт, что у ряда вирусов животных репликация начинается в определенных участках генома, позволяет предположить, что места начала репликации представляют собой специализированные последовательности в хромосомной ДНК. Среднее расстояние между местами начала репликации сравнимо со средним расстоянием между соседними петлями хроматина. Таким образом, возможно, что в каждой петле имеется лишь один участок начала репликации.

При расхождении двух репликационных вилок от одной точки начала репликации по разные стороны от этой точки родительские нуклеосомы будут попадать в разные дочерние спирали ДНК. В этом случае от точного расположения места начала репликации в транскрипционной единице будет зависеть распределение предсуществующих родительских гистонов между двуми дочерними генами. Не все нуклеосомы абсолютно одинаковы - в разных областях генетического материала структура хроматина различна. Точное положение места начала репликации в гене могло бы поэтому иметь важное биологическое значение, так как определяло бы структуру хроматина этого гена в следующем поколении клеток.

Пусковой механизм репликации ДНК явно работает по принципу "все или ничего", поскольку начавшаяся в S фазе репликация ДНК продолжается до полного завершения этого процесса. Контроль процесса репликации по принципу "все или ничего" может осуществляться по меньшей мере двумя различными способами:

1) некая общая система может специфически узнавать каждую хромосомную полосу, деконденсировть ее и тем самым делать все точки начала репликации одновременно доступными для белков, ответственных за образование репликационых пузырей;

2) репликативные белки могут узнавать лишь несколько точек начала репликации из данного набора, после чего начавшаяся локальная репликация будет изменять структуру остального хроматина репликативной единицы таким образом, что станет возможной репликация во всех других начальных точках.

Возможно, что критическим моментом в цепи событий, инициирующих репликацию ДНК, является достижение определенной стадии в процессе удвоения центриоли, которая действует и как часть важного центра организации микротрубочек, тесно связанного с интерфазным ядром, и как компонент каждого из полюсов веретена во время митоза. По-видимому, центриоль удваивается путем матричного процесса один раз за клеточный цикл (рис. 11-19).

Пока не известно также, чем определяется фиксированная последовательность репликации хромосомных полос. Для объяснения такой последовательности было предложено две гипотезы. Согласно одной из них, различные репликативные белки, каждый из которых специфичен в отношении хромосомных полос опредеоенного типа, синтезируются в фазе S в разное время. Согласно другой гипотезе, которая сейчас кажется более правдоподобной, репликативные белки просто действуют на те участки ДНК, которые для них более доступны; например, в течение фазы S может происходить непрерывная деконденсация хромосом, и хромосомные полосы одна за другой становятся доступными для репликативных белков.

Министерство образования и науки Российской Федерации Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова"

Кафедра "Естествознания и системного анализа"

Реферат по теме "Генетический код"

1. Понятие генетического кода

3. Генетическая информация

Список литературы


1. Понятие генетического кода

Генетический код - свойственная живым организмам единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов. Каждый нуклеотид обозначается заглавной буквой, с которой начинается название азотистого основания, входящего в его состав: - А (A) аденин; - Г (G) гуанин; - Ц (C) цитозин; - Т (T) тимин (в ДНК) или У (U) урацил (в мРНК).

Реализация генетического кода в клетке происходит в два этапа: транскрипцию и трансляцию.

Первый из них протекает в ядре; он заключается в синтезе молекул и-РНК на соответствующих участках ДНК. При этом последовательность нуклеотидов ДНК "переписывается" в нуклеотидную последовательность РНК. Второй этап протекает в цитоплазме, на рибосомах; при этом последовательность нуклеотидов и-РНК переводится в последовательность аминокислот в белке: этот этап протекает при участии транспортной РНК (т-РНК) и соответствующих ферментов.

2. Свойства генетического кода

1. Триплетность

Каждая аминокислота кодируется последовательностью из 3-х нуклеотидов.

Триплет или кодон - последовательность из трех нуклеотидов, кодирующая одну аминокислоту.


Код не может быть моноплетным, поскольку 4 (число разных нуклеотидов в ДНК) меньше 20. Код не может быть дуплетным, т.к. 16 (число сочетаний и перестановок из 4-х нуклеотидов по 2) меньше 20. Код может быть триплетным, т.к. 64 (число сочетаний и перестановок из 4-х по 3) больше 20.

2. Вырожденность.

Все аминокислоты, за исключением метионина и триптофана, кодируются более чем одним триплетом: 2 аминокислоты по 1 триплету = 2 9 аминокислот по 2 триплета = 18 1 аминокислота 3 триплета = 3 5 аминокислот по 4 триплета = 20 3 аминокислоты по 6 триплетов = 18 Всего 61 триплет кодирует 20 аминокислот.

3. Наличие межгенных знаков препинания.

Ген- это участок ДНК, кодирующий одну полипептидную цепь или одну молекулу tРНК, rРНК или sРНК.

Гены tРНК, rРНК, sРНК белки не кодируют.

В конце каждого гена, кодирующего полипептид, находится, по меньшей мере, один из 3-х терминирующих кодонов, или стоп-сигналов: UAA, UAG, UGA. Они терминируют трансляцию.

Условно к знакам препинания относится и кодон AUG - первый после лидерной последовательности. Он выполняет функцию заглавной буквы. В этой позиции он кодирует формилметионин (у прокариот).

4. Однозначность.

Каждый триплет кодирует лишь одну аминокислоту или является терминатором трансляции.

Исключение составляет кодон AUG. У прокариот в первой позиции (заглавная буква) он кодирует формилметионин, а в любой другой - метионин.

5. Компактность, или отсутствие внутригенных знаков препинания.

Внутри гена каждый нуклеотид входит в состав значащего кодона.

В 1961г. Сеймур Бензер и Френсис Крик экспериментально доказали триплетность кода и его компактость.

Суть эксперимента: "+" мутация - вставка одного нуклеотида. "-" мутация - выпадение одного нуклеотида. Одиночная "+" или "-" мутация в начале гена портит весь ген. Двойная "+" или "-" мутация тоже портит весь ген. Тройная "+" или "-" мутация в начале гена портит лишь его часть. Четверная "+" или "-" мутация опять портит весь ген.

Эксперимент доказывает, что код триплетен и внутри гена нет знаков препинания. Эксперимент был проведен на двух рядом расположенных фаговых генах и показал, кроме того, наличие знаков препинания между генами.

3. Генетическая информация

Генетическая информация - программа свойств организма, получаемая от предков и заложенная в наследственных структурах в виде генетического кода.

Предполагается, что становление генетической информации шло по схеме: геохимические процессы - минералообразование - эволюционный катализ ( автокатализ).

Возможно, что первые примитивные гены представляли собой микрокристаллические кристаллы глины, причем каждый новый слой глины выстраивается в соответствии с особенностями строения предыдущего, как бы получая от него информацию о строении.

Реализация генетической информации происходит в процессе синтеза белковых молекул с помощью трех РНК: информационной (иРНК), транспортной (тРНК) и рибосомальной (рРНК). Процесс передачи информации идет: - по каналу прямой связи: ДНК - РНК - белок; и - по каналу обратной связи: среда - белок - ДНК.

Живые организмы способны получать, сохранять и передавать информацию. Причем живым организмам присуще стремление полученную информацию о себе и окружающем мире использовать максимально эффективно. Наследственная информация, заложенная в генах и необходимая живому организму для существования, развития и размножения передается от каждого индивида его потомкам. Эта информация определяет направление развития организма, и в процессе взаимодействия его с окружающей средой реакция на ее индивида может искажаться, обеспечивая тем самым эволюцию развития потомков. В процессе эволюции живого организма возникает и запоминается новая информация, в том числе для него возрастает ценность информации.

В ходе реализации наследственной информации в определенных условиях внешней среды формируется фенотип организмов данного биологического вида.

Генетическая информация определяет морфологическое строение, рост, развитие, обмен веществ, психический склад, предрасположенность к заболеваниям и генетические пороки организма.

Многие ученые, справедливо подчеркивая роль информации в становлении и эволюции живого, отмечали это обстоятельство в качестве одного из главных критериев жизни. Так, В.И. Карагодин считает: "Живое есть такая форма существования информации и кодируемых ею структур, которая обеспечивает воспроизведение этой информации в подходящих условиях внешней среды". Связь информации с жизнью отмечает и А.А. Ляпунов: "Жизнь - это высокоупорядоченное состояние вещества, использующее для выработки сохраняющихся реакций информацию, кодируемую состояниями отдельных молекул". Известный наш астрофизик Н.С. Кардашев также подчеркивает информационную составляющую жизни: "Жизнь возникает благодаря возможности синтеза особого рода молекул, способных запоминать и использовать вначале самую простую информацию об окружающей среде и собственной структуре, которую они используют для самосохранения, для воспроизводства и, что для нас особенно важно, получения еще большего количества информации". На эту способность живых организмов сохранять и передавать информацию обращает внимание в своей книге "Физика бессмертия" эколог Ф. Типлер: "Я определяю жизнь как некую закодированную информацию, которая сохраняется естественным отбором". Более того, он считает, если это так, то система жизнь - информация является вечной, бесконечной и бессмертной.

Раскрытие генетического кода и установление закономерностей молекулярной биологии показали необходимость соединения современной генетики и дарвиновской теории эволюции. Так родилась новая биологическая парадигма - синтетическая теория эволюции (СТЭ), которую можно рассматривать уже как неклассическую биологию.

Основные идеи эволюции Дарвина с его триадой - наследственностью, изменчивостью, естественным отбором - в современном представлении эволюции живого мира дополняются представлениями не просто естественного отбора, а такого отбора, который детерминирован генетически. Началом разработки синтетической или общей эволюции можно считать работы С.С. Четверикова по популяционной генетике, в которых было показано, что отбору подвергаются не отдельные признаки и особи, а генотип всей популяции, но осуществляется он через фенотипические признаки отдельных особей. Это приводит к распространению полезных изменений во всей популяции. Таким образом, механизм эволюции реализуется как через случайные мутации на генетическом уровне, так и через наследование наиболее ценных признаков (ценности информации!), определяющих адаптацию мутационных признаков к окружающей среде, обеспечивая наиболее жизнеспособное потомство.

Сезонные изменения климата, различных природные или техногенные катастрофы с одной стороны, приводят к изменению частоты повторяемости генов в популяциях и, как следствие, к снижению наследственной изменчивости. Этот процесс иногда называют дрейфом генов. А с другой - к изменениям концентрации различных мутаций и уменьшению разнообразия генотипов, содержащихся в популяции, что может привести к изменениям направленности и интенсивности действия отбора.


4. Расшифровка генетического кода человека

В мае 2006 года учёные, работающие над расшифровкой генома человека, опубликовали полную генетическую карту хромосомы 1, которая была последней из не полностью секвенсированной хромосомой человека.

Предварительная генетическая карта человека была опубликована в 2003 году, что ознаменовало формальное завершение проекта Human Genome. В его рамках были секвенсированы фрагменты генома, содержащие 99% генов человека. Точность идентификации генов составила 99,99%. Однако на момент завершения проекта полностью секвенсированы были лишь четыре из 24 хромосом. Дело в том, что помимо генов хромосомы содержат фрагменты, не кодирующие никаких признаков и не участвующие в синтезе белков. Роль, которые эти фрагменты играют в жизни организма пока остается неизвестной, но все больше исследователей склоняются к мнению, что их изучение требует самого пристального внимания.

Генетический код - это способ кодирования последовательности аминокислот в молекуле белка с помощью последовательности нуклеотидов в молекуле нуклеиновой кислоты. Свойства генетического кода вытекают из особенностей этого кодирования.

Каждой аминокислоте белка сопоставляется в соответствие три подряд идущих нуклеотида нуклеиновой кислоты - триплет , или кодон . Каждый из нуклеотидов может содержать одно из четырех азотистых оснований. В РНК это аденин (A), урацил (U), гуанин (G), цитозин (C). По-разному комбинируя азотистые основания (в данном случае содержащие их нуклеотиды) можно получить множество различных триплетов: AAA, GAU, UCC, GCA, AUC и т. д. Общее количество возможных комбинаций - 64, т. е. 43.

В состав белков живых организмов входит около 20 аминокислот. Если бы природа «задумала» кодировать каждую аминокислоту не тремя, а двумя нуклеотидами, то разнообразия таких пар не хватило бы, так как их оказалось бы всего 16, т.е. 42.

Таким образом, основное свойство генетического кода - его триплетность . Каждая аминокислота кодируется тройкой нуклеотидов.

Поскольку возможных разных триплетов существенно больше, чем используемых в биологических молекулах аминокислот, то в живой природе было реализовано такое свойство как избыточность генетического кода. Многие аминокислоты стали кодироваться не одним кодоном, а несколькими. Например, аминокислота глицин кодируется четырьмя различными кодонами: GGU, GGC, GGA, GGG. Избыточность также называют вырожденностью .

Соответствие между аминокислотами и кодонами отражают в виде таблиц. Например, таких:

По отношению к нуклеотидам генетический код обладает таким свойством как однозначность (или специфичность ): каждый кодон соответствует только одной аминокислоте. Например, кодоном GGU можно закодировать только глицин и больше никакую другую аминокислоту.

Еще раз. Избыточность — это про то, что несколько триплетов могут кодировать одну и ту же аминокислоту. Специфичность — каждый конкретный кодон может кодировать только одну аминокислоту.

В генетическом коде нет специальных знаков препинания (если не считать стоп-кодонов, обозначающих окончание синтеза полипептида). Функцию знаков препинания выполняют сами триплеты - окончание одного обозначает, что следом начнется другой. Отсюда следуют следующие два свойства генетического кода: непрерывность и неперекрываемость . Под непрерывность понимают считывание триплетов сразу друг за другом. Под неперекрываемостью - то, что каждый нуклеотид может входить в состав только одного триплета. Так первый нуклеотид следующего триплета всегда стоит после третьего нуклеотида предшествующего триплета. Кодон не может начаться со второго или третьего нуклеотида предшествующего кодона. Другими словами, код не перекрывается.

Генетический код обладает свойством универсальности . Он един для всех организмов на Земле, что говорит о единстве происхождения жизни. При этом встречаются очень редкие исключения. Например, некоторые триплеты митохондрий и хлоропластов кодируют другие, а не обычные для них, аминокислоты. Это может говорить о том, что на заре развития жизни существовали немного различные вариации генетического кода.

Наконец, генетический код обладает помехоустойчивостью , которая является следствием такого его свойства как избыточность. Точечные мутации, иногда происходящие в ДНК, обычно приводят к замене одного азотистого основания на другое. При этом изменяется триплет. Например, было AAA, после мутации стало AAG. Однако подобные изменения не всегда приводят к изменению аминокислоты в синтезируемом полипептиде, так как оба триплета из-за свойства избыточности генетического кода могут соответствовать одной аминокислоте. Учитывая, что мутации чаще вредны, свойство помехоустойчивости полезно.

Генетический, или биологический, код является одним из универсальных свойств живой природы, доказывающим единство ее происхождения. Генетический код - это способ кодирования последовательности аминокислот полипептидас помощью последовательности нуклеотидов нуклеиновой кислоты (информационной РНКили комплиментарного ей участка ДНК, на котором синтезируется иРНК).

Встречаются другие определения.

Генетический код - это соответствие каждой аминокислоте (входящей в состав белков живого) определенной последовательности трех нуклеотидов. Генетический код - это зависимость между основаниями нуклеиновых кислот и аминокислотами белка.

В научной литературе под генетическим кодом не понимают последовательность нуклеотидов в ДНК у какого-либо организма, определяющую его индивидуальность.

Неверно считать, что у одного организма или вида код один, а у другого - другой. Генетический код - это то, как кодируются аминокислоты нуклеотидами (т. е. принцип, механизм); он универсален для всего живого, одинаков для всех организмов.

Поэтому некорректно говорить, например, «Генетический код человека» или «Генетический код организма», что нередко используется в околонаучной литературе и фильмах.

В данных случаях обычно имеется в виду геном человека, организма и др.

Разнообразие живых организмов и особенностей их жизнедеятельности обусловлено в первую очередь разнообразием белков.

Специфическое строение белка определяется порядком и количеством различных аминокислот, входящих в его состав. Последовательность аминокислот пептида зашифрована в ДНК с помощью биологического кода. С точки зрения разнообразия набора мономеров, ДНК более примитивная молекула, чем пептид. ДНК представляет собой различные варианты чередования всего четырех нуклеотидов. Это долгое время мешало исследователям рассматривать ДНК как материал наследственности.

Как кодируются аминокислоты нуклеотидами

1) Нуклеиновые кислоты (ДНК и РНК) - это полимеры, состоящие из нуклеотидов.

В каждый нуклеотид может входить одно из четырех азотистых оснований: аденин (А, еn: A), гуанин (Г, G), цитозин (Ц, en: C), тимин (T, en: Т). В случае РНК тимин заменяется на урацил (У, U).

При рассмотрении генетического кода принимают во внимание только азотистые основания.

Тогда цепочку ДНК можно представить в виде их линейной последовательности. Например:

Комплиментарный данному коду участок иРНК будет таким:

2) Белки (полипептиды) - это полимеры, состоящие из аминокислот.

В живых организмах для построения полипептидов используется 20 аминокислот (еще несколько очень редко). Для их обозначения тоже можно использовать одну букву (хотя чаще используют три - сокращение от названия аминокислоты).

Аминокислоты в полипептиде соединены между собой пептидной связью также линейно. Например, пусть имеется участок белка со следующей последовательностью аминокислот (каждая аминокислота обозначается одной буквой):

3) Если стоит задача закодировать каждую аминокислоту с помощью нуклеотидов, то она сводится к тому, как с помощью 4 букв закодировать 20 букв.

Это можно сделать, сопоставляя буквам 20-ти буквенного алфавита слова, составленные из нескольких букв 4-х буквенного алфавита.

Если одну аминокислоту кодировать одним нуклеотидом, то можно закодировать только четыре аминокислоты.

Если каждой аминокислоте сопоставлять два подряд идущих в цепи РНК нуклеотида, то можно закодировать шестнадцать аминокислот.

Действительно, если имеется четыре буквы (A, U, G, C), то количество их разных парных комбинаций будет 16: (AU, UA), (AG, GA), (AC, CA), (UG, GU), (UC, CU), (GC, CG), (AA, UU, GG, CC).

[Скобки используются для удобства восприятия.] Это значит, что таким кодом (двухбуквенным словом) можно закодировать только 16 разных аминокислот: каждой будет соответствовать свое слово (два подряд идущих нуклеотида).

Из математики формула, позволяющая определить количество комбинаций, выглядит так: ab = n.

Здесь n - количество разных комбинаций, a - количество букв алфавита (или основание системы счисления), b - количество букв в слове (или разрядов в числе). Если подставить в эту формулу 4-х буквенный алфавит и слова, состоящие из двух букв, то получим 42 = 16.

Если в качестве кодового слова каждой аминокислоты использовать три подряд идущих нуклеотида, то можно закодировать 43 = 64 разных аминокислот, так как 64 разных комбинации можно составить из четырех букв, взятых по три (например, AUG, GAA, CAU, GGU и т.

д.). Это уже больше, чем достаточно для кодирования 20 аминокислот.

Именно трехбуквенный код используется в генетическом коде . Три подряд идущих нуклеотида, кодирующих одну аминокислоту, называются триплетом (или кодоном ).

Каждой аминокислоте сопоставляется определенный триплет нуклеотидов.

Кроме того, поскольку комбинаций триплетов с избытком перекрывают количество аминокислот, то многие аминокислоты кодируются несколькими триплетами.

Три триплета не кодируют ни одну из аминокислот (UAA, UAG, UGA).

Они обозначают конец трансляции и называются стоп-кодонами (или нонсенс-кодонами ).

Триплет AUG кодирует не только аминокислоту метионин, но и инициирует трансляцию (играет роль старт-кодона).

Ниже приведены таблицы соответствия аминокислот триплетам нуклеоитидов.

По первой таблице удобно определять по заданному триплету соответствующую ему аминокислоту. По второй - по заданной аминокислоте соответствующие ей триплеты.

Рассмотрим пример реализации генетического кода. Пусть имеется иРНК со следующим содержанием:

Разобьем последовательность нуклеотидов на триплеты:

Сопоставим каждому триплету кодируемую им аминокислоту полипептида:

Метионин - Аспаргиновая кислота - Серин - Треонин - Триптофан - Лейцин - Лейцин - Лизин - Аспарагин - Глутамин

Последний триплет является стоп-кодоном.

Свойства генетического кода

Свойства генетического кода во многом являются следствием способа кодирования аминокислот.

Первое и очевидное свойство - это триплетность .

Под ним понимают тот факт, что единицей кода является последовательность из трех нуклеотидов.

Важным свойством генетического кода является его неперекрываемость . Нуклеотид, входящий в один триплет, не может входить в другой.

То есть последовательность AGUGAA можно прочитать только как AGU-GAA, но нельзя, например, так: AGU-GUG-GAA. Т. е. если пара GU входит в один триплет, она не может уже быть составной частью другого.

Под однозначностью генетического кода понимают то, что каждому триплету соответствует только одна аминокислота.

Например, триплет AGU кодирует аминокислоту серин и больше никакую другую.

Генетический код

Данному триплету однозначно соответствует только одна аминокислота.

С другой стороны, одной аминокислоте может соответствовать несколько триплетов. Например, тому же серину, кроме AGU, соответствует кодон AGC. Данное свойство называется вырожденностью генетического кода.

Вырожденность позволяет оставлять многие мутации безвредными, так как часто замена одного нуклеотида в ДНК не приводит к изменению значения триплета. Если внимательно посмотреть на таблицу соответствия аминокислот триплетам, то можно увидеть, что, если аминокислота кодируется несколькими триплетами, то они зачастую различаются последним нуклеотидом, т. е. он может быть любым.

Также отмечают некоторые другие свойства генетического кода (непрерывность, помехоустойчивость, универсальность и др.).

Устойчивость как приспособление растений к условиям существования. Основные реакции растений на действие неблагоприятных факторов.

Устойчивость растений – способность противостоять воздействию экстремальных факторов среды (почвенная и воздушная засуха).

Однозначность ге-не-ти-че-ско-го кода про-яв-ля-ет-ся в том, что

Это свойство выработано в процессе эволюции и генетически закрепилось. В районах с неблагоприятными условиями сформировались устойчивые декоративные формы и местные сорта культурных растений – засухоустойчивых. Присущий растениям тот или иной уровень устойчивости выявляется лишь при действии экстемальных факторов среды.

В рез-те наступления такого фактора наступает фаза раздражения – резкое отклонение от нормы ряда физиологических параметров и быстрое возвращение их к норме. Затем происходит изменение интенсивности обмена веществ и повреждение внутриклеточных структур. При этом подавляются все синтетические, активизируются все гидролитические и снижается общая энергообеспеченность организма. Если действие фактора не превышает порогового значения, наступает фаза адаптации.

Адаптированное растение меньше реагирует на повторное или усиливающееся воздействие экстрем.фактора. На организменном уровне к механизмам адаптации добавляются взаимодействие м/у органами. Ослабление передвижения по растению потоков воды, минеральных и органических соединений обостряет конкуренцию между органами, прекращается их рост.

Био.устойчивость у растений опред. макс.значением экстремального фактора при котором растения еще образуют жизнеспособные семена. Агрономическая устойчивость определяется степенью снижения урожая. Растения характеризуются по их устойчивости к конкретному типу экстремального фактора – зимостояние, газоустойчивые, солеустойчивые, засухоустойчивые.

Тип круглые черви, в отличие от плоских обладают первичной полостью тела – схизоцелем, образующегося за счет разрушения паренхимы, заполняющей промежутки между стенкой тела и внутренними органами – его функция – транспортная.

В ней поддерживается гомеостаз. Форма тела круглая в поперечнике. Покровы кутикулизированы. Мускулатура представлена слоем продольных мышц. Кишечник сквозной и состоит из 3-х отделов: переднего, среднего и заднего. Ротовое отверстие расположено на брюшной поверхности переднего конца тела. Глотка обладает характерным трехгранным просветом. Выделительная система представлена протонефридиями или особыми кожными – гиподермальными железами. Большинство видов раздельнополые, размножение лишь половое.

Развитие прямое, реже с метаморфозом. У них постоянство клеточного состава тела и отсутствие способности к регенерации. Передний отдел кишечника состоит из ротовой полости, глотки, пищевода.

Среднего и заднего отдела не имеют. Выделительная система состоит 1-2 гигантских клеток гиподермы. Продольные выделительные каналы залегают в боковых валиках гиподермы.

Свойства генетического кода. Доказательства триплетности кода. Расшифровка кодонов. Терминирующие кодоны. Понятие о генетической супрессии.

Представление о том, что в гене закодирована информация в первичной структуре белка, было конкретизировано Ф.

Криком в его гипотезе последовательности, согласно которой последовательность элементов гена определяет последовательность аминокислотных остатков в полипептидной цепи. Справедливость гипотезы последовательности доказывает колинеарность структур гена и кодируемого им полипептида. Наиболее существенным достижением в 1953 г. было соображение о том. Что код скорее всего триплетен.

; пары оснований днк: А-Т, Т-А, G-C, C-G — могут закодировать лишь 4 аминокислоты, если каждая пара соответствует одной аминокислоте. Как известно, в белки входят 20 основных аминокислот. Если предположить, что каждой аминокислоте соответствует 2 пары оснований, то можно закодировать 16 аминокислот (4*4) — этого опять недостаточно.

Если же код триплетен, то из 4-х пар оснований можно составить 64 кодона (4*4*4), чего с избытком хватает для кодирования 20 аминокислот. Крик с сотрудниками предполагали, что код триплетен, между кодонами нет «запятых», т. е. разделяющих знаков; считывание кода в пределах гена происходит с фиксированной точки в одном направлении. Летом 1961 г. Киренберг и Маттей сообщили о расшифровке первого кодона и предположили метод установления состава кодонов в бесклеточной системе белкового синтеза.

Так, кодон для фенилаланина был расшифрован как UUU в иРНК. Далее, в результате применения методов, разработанных Кораной, Ниренбергом и Ледером в 1965 г.

был составлен кодовый словарь в его современном виде. Таким образом, получение у фагов Т4 мутаций, вызванных выпадением или добавлением оснований явилось доказательством триплетности кода (1 свойство). Эти выпадения и добавления, приводящие к сдвигам рамки при «чтении» кода устранялось только восстановлением правильности кода, это предотвращало появление мутантов. Эти эксперименты показали также, что триплеты не перекрываются, т. е. каждое основание может принадлежать только одному триплету.(2 свойство).

Для большинства аминокислот имеется по нескольку кодонов. Код, в котором число аминокислот меньше числа кодонов называют вырожденным(3 свойство), т.

е. данная аминокислота может кодироваться более чем одним триплетом. Кроме того, три кодона вообще не кодируют никакую аминокислоту («нонсенс — кодоны») и действуют как «стоп — сигнал». Стоп — кодон — это концевая точка функциональной единицы ДНК — цистрона. Терминирующие кодоны одинаковы у всех видов и представлены как UAA, UAG, UGA. Примечательная особенность кода в том, что он универсален (4 свойство).

У всех живых организмов одни и те же триплеты кодируют одни и те же аминокислоты.

Существование трех типов мутантных кодонов — терминаторов и их супрессия были показаны у E.coli и для дрожжей. Обнаружение генов — супрессоров, «осмысливающих» нонсенс — аллели разных генов, указывает на то, что трансляция генетического кода может меняться.

Мутации, затрагивающие антикодон тРНК, меняют их кодоновую специфичность и создают возможность для супрессии мутаций на уровне трансляции. Супрессия на уровне трансляции может происходить вследствие мутаций в генах, кодирующих некоторые белки рибосом. В результате этих мутаций рибосома «ошибается», например в считывании нонсенс — кодонов и «осмысливает» их за счет некоторых немутантных тРНК. Наряду с генотипической супрессией, действующей на уровне трансляции, возможна и фенотипическая супрессия нонсенс — аллелей: при понижении температуры, при действии на клетки аминогликозидных антибиотиков, связывающихся с рибосомами, например стрептомицина.

22. Размножение высших растений: вегетативное и бесполое. Спорообразование, строение спор, равно- и разноспоровость.Размножение как свойство живой материи т.е способность особи дать начало себе подобной, существовало и на ранних этапах эволюции.

Формы размножения можно разделить на 2 вида: бесполое и половое. Собственно бесполое размножение осуществляется без участия половых клеток, с помощью специализированных клеток – спор. Они образуются в органах бесполого размножения – спорангиях в результате митотического деления.

Спора при своем прорастании воспроизводит новую особь, сходную с материнской, за исключением спор семенных растений, у к-рых спора утратила функцию размножения и расселения. Споры могут образовываться и путем редукционного деления, при этом наружу высыпаются одноклеточные споры.

Размножение растений с помощью вегетативных (частью побега, листом, корнем) или делением одноклеточных водорослей пополам называется вегетативным (луковица, черенки).

Половое размножение осуществляется специальными половыми клетками – гаметами.

Гаметы образуются в результате мейоза, бывают женские, и мужские. В результате их слияния появляется зигота, из которой в дальнейшем развивается новый организм.

Растения различаются типами гамет. У некоторых одноклеточных организмов в определенное время функционирует как гамета. Разнополые организмы (гаметы) сливаются – этот половой процесс называется хологамией. Если мужские и женские гаметы морфологически сходны, подвижны – это изогаметы.

А половой процесс – изогамным . Если женские гаметы несколько крупнее и менее подвижные чем мужские, то это гетерогаметы, а процесс – гетерогамия. Оогамия – женские гаметы очень крупные и неподвижные, мужские гаметы – мелкие и подвижные.

12345678910Следующая ⇒

Генетический код – соответствие между триплетами ДНК и аминокислотами белков

Необходимость кодирования структуры белков в линейной последовательности нуклеотидов мРНК и ДНК продиктована тем, что в ходе трансляции:

  • нет соответствия между числом мономеров в матрице мРНК и продукте — синтезируемом белке;
  • отсутствует структурное сходство между мономерами РНК и белка.

Это исключает комплементарное взаимодействие между матрицей и продуктом — принцип, по которому осуществляется построение новых молекул ДНК и РНК в ходе репликации и транскрипции.

Отсюда становится ясным, что должен существовать "словарь", позволяющий выяснить, какая последовательность нуклеотидов мРНК обеспечивает включение в белок аминокислот в заданной последовательности. Этот "словарь" получил название генетического, биологического, нуклеотидного, или аминокислотного кода. Он позволяет шифровать аминокислоты, входящие в состав белков, с помощью определённой последовательности нуклеотидов в ДНК и мРНК. Для него характерны определённые свойства.

Триплетность. Одним из основных вопросов при выяснении свойств кода был вопрос о числе нуклеотидов, которое должно определять включение в белок одной аминокислоты.

Было установлено, что кодирующими элементами в шифровании аминокислотной последовательности действительно являются тройки нуклеотидов, или триплеты, которые получили название "кодоны".

Смысл кодонов .

Удалось установить, что из 64 кодонов включение аминокислот в синтезирующуюся полипептидную цепь шифрует 61 триплет, а 3 остальных — UAA, UAG, UGA не кодируют включение в белок аминокислот и первоначально были названы бессмысленными, или нон-сенс-кодонами. Однако в дальнейшем было показано, что эти триплеты сигнализируют о завершении трансляции, и поэтому их стали называть терминирующими, или стоп-кодонами.

Кодоны мРНК и триплеты нуклеотидов в кодирующей нити ДНК с направлением от 5′ к 3′-концу имеют одинаковую последовательность азотистых оснований, за исключением того, что в ДНК вместо урацила (U), характерного для мРНК, стоит тимин (Т).

Специфичность .

Каждому кодону соответствует только одна определённая аминокислота. В этом смысле генетический код строго однозначен.

Таблица 4-3.

Однозначность – одно из свойств генетического кода, проявляется в том, что …

Основные компоненты белоксинтезирующей системы

Необходимые компоненты Функции
1 . Аминокислоты Субстраты для синтеза белков
2. тРНК тРНК выполняют функцию адаптеров. Они акцепторным концом взаимодействуют с аминокислотами, а антикодоном — с кодоном мРНК.
3.

Аминоацил-тРНК синтетазы

Каждая аа-тРНК-синтетаза катализирует реакцию специфического связывания одной из 20 аминокислот с соответствующей тРНК
4.мРНК Матрица содержит линейную последовательность кодонов, определяющих первичную структуру белков
5. Рибосомы Рибонуклеопротеиновые субклеточные структуры, являющиеся местом синтеза белков
6. Источники энергии
7. Белковые факторы инициации, элонгации, терминации Специфические внерибосомные белки, необходимые для процесса трансляции (12 факторов инициации: elF; 2 фактора элонгации: eEFl, eEF2, и факторы терминации: eRF)
8.

Ионы магния

Кофактор, стабилизирующий структуру рибосом

Примечания: elF (eukaryotic initiation factors ) — факторы инициации; eEF (eukaryotic elongation factors ) — факторы элонгации; eRF (eukaryotic releasing factors ) — факторы терминации.

Вырожденность . В мРНК и ДНК имеет смысл 61 триплет, каждый из которых кодирует включение в белок одной из 20 аминокислот.

Из этого следует, что в информационных молекулах включение в белок одной и той же аминокислоты определяют несколько кодонов. Это свойство биологического кода получило название вырожденности.

У человека одним кодоном зашифрованы только 2 аминокислоты — Мет и Три, тогда как Лей, Сер и Apr — шестью кодонами, а Ала, Вал, Гли, Про, Тре — четырьмя кодонами (табл.

Избыточность кодирующих последовательностей — ценнейшее свойство кода, так как она повышает устойчивость информационного потока к неблагоприятным воздействиям внешней и внутренней среды. При определении природы аминокислоты, которая должна быть включена в белок, третий нуклеотид в кодоне не имеет столь важного значения, как первые два. Как видно из табл. 4-4, для многих аминокислот замена нуклеотида в третьей позиции кодона не сказывается на его смысле.

Линейность записи информации .

В ходе трансляции кодоны мРНК "читаются" с фиксированной стартовой точки последовательно и не перекрываются. В записи информации отсутствуют сигналы, указывающие на конец одного кодона и начало следующего. Кодон AUG является инициирующим и прочитывается как в начале, так и в других участках мРНК как Мет. Следующие за ним триплеты читаются последовательно без каких-либо пропусков вплоть до стоп-кодона, на котором синтез полипептидной цепи завершается.

Универсальность .

До недавнего времени считалось, что код абсолютно универсален, т.е. смысл кодовых слов одинаков для всех изученных организмов: вирусов, бактерий, растений, земноводных, млекопитающих, включая человека.

Однако позднее стало известно одно исключение, оказалось, что митохондриальная мРНК содержит 4 триплета, имеющих другое значение, чем в мРНК ядерного происхождения. Так, в мРНК митохондрий триплет UGA кодирует Три, AUA — Мет, а АСА и AGG прочитываются как дополнительные стоп-кодоны.

Колинеарность гена и продукта .

У прокариотов обнаружено линейное соответствие последовательности кодонов гена и последовательности аминокислот в белковом продукте, или, как говорят, существует колинеарность гена и продукта.

Таблица 4-4.

Генетический код

Первое основание Второе основание
U С А G
U UUU Фен UCU Cep UAU Тир UGU Цис
UUС Фен UCC Сер иАСТир UGC Цис
UUА Лей UCA Cep UAA* UGA*
UUG Лей UCG Сер UAG* UGG Apr
С CUU Лей CCU Про CAU Гис CGU Apr
CUC Лей ССС Про САС Гис CGC Apr
CUA Лей ССА Про САА Глн CGA Apr
CUG Лей CCG Про CAG Глн CGG Apr
А AUU Иле ACU Tpe AAU Асн AGU Сер
AUC Иле АСС Тре ААС Асн AGG Сер
AUA Мет АСА Тре ААА Лиз AGA Apr
AUG Мет ACG Тре AAG Лиз AGG Apr
G GUU Ban GCU Ала GAU Асп GGU Гли
GUC Вал GCC Ала GAC Асп GGC Гли
GUА Вал GСА Ала GАА Глу GGA Гли
GUG Вал GСG Ала GAG Глу GGG Гли

Примечания: U — урацил; С — цитозин; А — аденин; G — гуанин; * — терминирующий кодон.

У эукариотов последовательности оснований в гене, колинеарные аминокислотной последовательности в белке, прерываются нитронами.

Поэтому в эукариотических клетках аминокислотная последовательность белка колинеарна последовательности экзонов в гене или зрелой мРНК после посттранскригщионного удаления интронов.

Под генетическим кодом принято понимать такую систему знаков, обозначающих последовательное расположение соединений нуклеотидов в ДНКа и РНКа, которая соответствует другой знаковой системе, отображающей последовательность аминокислотных соединений в молекуле белка.

Это важно!

Когда учёным удалось изучить свойства генетического кода, одним из главных была признана универсальность. Да, как ни странно это звучит, все объединяет один, универсальный, общий генетический код. Формировался он на протяжении большого временного промежутка, и процесс закончился около 3,5 миллиардов лет назад. Следовательно, в структуре кода можно проследить следы его эволюции, от момента зарождения до сегодняшнего дня.

Когда говорится о последовательности расположения элементов в генетическом коде, имеется в виду, что она далеко не хаотична, а имеет строго определённый порядок. И это тоже во многом определяет свойства генетического кода. Это равнозначно расположению букв и слогов в словах. Стоит нарушить привычный порядок, и большинство того, что мы будем читать на книжных или газетных страницах, превратится в нелепую абракадабру.

Основные свойства генетического кода

Обычно код несёт в себе какую-либо информацию, зашифрованную особым образом. Для того чтобы расшифровать кода, необходимо знать отличительные особенности.

Итак, основные свойства генетического кода - это:

  • триплетность;
  • вырожденность или избыточность;
  • однозначность;
  • непрерывность;
  • уже указанная выше универсальность.

Остановимся подробнее на каждом свойстве.

1. Триплетность

Это когда три соединения нуклеотидов образуют последовательную цепочку внутри молекулы (т.е. ДНК или же РНК). В результате создаётся соединение триплета или кодирует одну из аминокислот, место её нахождения в цепи пептидов.

Различают кодоны (они же кодовые слова!) по их последовательности соединения и по типу тех азотистых соединений (нуклеотидов), которые входят в их состав.

В генетике принято выделять 64 кодоновых типа. Они могут образовывать комбинации из четырёх типов нуклеотидов по 3 в каждом. Это равносильно возведению числа 4 в третью степень. Таким образом, возможно образование 64-х нуклеотидных комбинаций.

2. Избыточность генетического кода

Это свойство прослеживается тогда, когда для шифрования одной аминокислоты требуется несколько кодонов, обычно в пределах 2-6. И только и триптофана можно кодировать с помощью одного триплета.

3. Однозначность

Она входит в свойства генетического кода как показатель здоровой генной наследственности. Например, о хорошем состоянии крови, о нормальном гемоглобине может рассказать медикам стоящий на шестом месте в цепочке триплет ГАА. Именно он несёт информацию о гемоглобине, и им же кодируется А если человек болен анемией, один из нуклеотидов заменяется на другую букву кода - У, что и является сигналом заболевания.

4. Непрерывность

При записи этого свойства генетического кода следует помнить, что кодоны, как звенья цепочки, располагаются не на расстоянии, а в прямой близости, друг за другом в нуклеиновой кислотной цепи, и цепь эта не прерывается - в ней нет начала или конца.

5. Универсальность

Никогда не следует забывать, что всё сущее на Земле объединено общим генетическим кодом. И потому у примата и человека, у насекомого и птицы, столетнего баобаба и едва проклюнувшейся из-под земли травинки одинаковыми триплетами кодируются схожие аминокислоты.

Именно в генах заложена основная информация о свойствах того или иного организма, своего рода программа, которую организм получает в наследство от живших ранее и которая существует как генетический код.

Благодаря процессу транскрипции в клетке осуществляется передача информации от ДНК к белку: ДНК - и-РНК - белок. Генетическая информация, содержащаяся в ДНК и в и-РНК, заключена в последовательности расположения нуклеотидов в молекулах. Каким же образом происходит перевод информации с "языка" нуклеотидов на "язык" аминокислот? Такой перевод осуществляется с помощью генетического кода. Код, или шифр,- это система символов для перевода одной формы информации в другую. Генетический код - это система записи информации о последовательности расположения аминокислот в белках с помощью последовательности расположения нуклеотидов в информационной РНК. Насколько важна именно последовательность расположения одних и тех же элементов (четырех нуклеотидов в РНК) для понимания и сохранения смысла информации, можно убедиться на простом примере: переставив буквы в слове код, мы получим слово с иным значением - док. Какими же свойствами обладает генетический код?

1. Код триплетен. В состав РНК входят 4 нуклеотида: А, Г, Ц, У. Если бы мы пытались обозначить одну аминокислоту одним нуклеотидом, то 16 из 20 аминокислот остались бы не зашифрованы. Двухбуквенный код позволил бы зашифровать 16 аминокислот (из четырех нуклеотидов можно составить 16 различных комбинаций, в каждой из которых имеется два нуклеотида). Природа создала трехбуквенный, или триплетный, код. Это означает, что каждая из 20 аминокислот зашифрована последовательностью трех нуклеотидов, называемых триплетом или кодоном. Из 4 нуклеотидов можно создать 64 различные комбинации по 3 нуклеотида в каждой (4*4*4=64). Этого с избытком хватает для кодирования 20 аминокислот и, казалось бы, 44 кодона являются лишними. Однако это не так.

2. Код вырожден. Это означает, что каждая аминокислота шифруется более чем одним кодоном (от двух до шести). Исключение составляют аминокислоты метионин и триптофан, каждая из которых кодируется только одним триплетом. (Это видно из таблицы генетического кода .) Тот факт, что метионин кодируется одним триплетом АУТ, имеет особый смысл, который вам станет понятен позже ( 16).

3. Код однозначен. Каждый кодон шифрует только одну аминокислоту. У всех здоровых людей в гене, несущем информацию о бета-цепи гемоглобина , триплет ГАА или ГАГ, I стоящий на шестом месте, кодирует глутаминовую кислоту. У больных серповидноклеточной анемией второй нуклеотид в этом триплете заменен на У. Как видно из таблицы, триплеты ГУА или ГУГ, которые в этом случае образуются, кодируют аминокислоту валин. К чему приводит такая замена, вы уже знаете из раздела о ДНК .

4. Между генами имеются "знаки препинания". В печатном тексте в конце каждой фразы стоит точка. Несколько связанных по смыслу фраз составляют абзац. На языке генетической информации таким абзацем являются оперон и комплементарная ему и-РНК. Каждый ген в опероне кодирует одну полипептидную цепочку - фразу. Так как в ряде случаев по матрице и-РНК последовательно создается несколько разных полипептидных цепей, они должны быть отделены друг от друга. Для этого в генетическом коде существуют три специальные триплета - УАА, УАГ, УГА, каждый из которых обозначает прекрдщение синтеза одной полипептидной цепи. Таким образом, эти триплеты выполняют функцию знаков препинания. Они находятся в конце каждого гена. Внутри гена нет "знаков препинания". Поскольку генетический код подобен языку, разберем это свойство на примере такой составленной из триплетов фразы: жил был кот тих был сер мил мне тот кот. Смысл написанного понятен, несмотря на отсутствие "знаков препинания. Если же мы уберем в первом слове одну букву (один нуклеотид в гене), но читать будем также тройками букв, то получится бессмыслица: илб ылк отт ихб ылс ерм илм нет отк от Нарушение смысла возникает и при выпадении одного или двух нуклеотидов из гена. Белок, который будет считываться с такого испорченного гена, не будет иметь ничего общего с тем белком, который кодировался нормальным геном.

6. Код универсален. Генетический код един для всех живущих на Земле существ. У бактерий и грибов, пшеницы и хлопка, рыб и червей, лягушки и человека одни и те же триплеты кодируют одни и те же аминокислоты.