Аморфные вещества. Кристаллическое и аморфное состояние вещества

Большинство веществ в умеренном климате Земли находятся в твердом состоянии. Твердые тела сохраняют не только форму, но и объем.

По характеру относительного расположения частиц твердые тела делят на три вида: кристаллические, аморфные и композиты.

Аморфные тела. Примерами аморфных тел могут служить стекло, различные затвердевшие смолы (янтарь), пластики и т. д. Если аморфное тело нагревать, то оно постепенно размягчается, и переход в жидкое состояние занимает значительный интервал температур.

Сходство с жидкостями объясняется тем, что атомы и молекулы аморфных тел, подобно молекулам жидкости, имеют время «оседлой жизни». Определенной температуры плавления нет, поэтому аморфные тела можно рассматривать как переохлаждение жидкости с очень большой вязкостью. Отсутствие дальнего порядка в расположении атомов аморфных тел приводит к тому, что вещество в аморфном состоянии имеет меньшую плотность, чем в кристаллическом.

Беспорядок в расположении атомов аморфных тел приводит к тому, что среднее расстояние между атомами по разным направлениям одинаково, поэтому они изотропны, т. е. все физические свойства (механических, оптических и т. д.) не зависят от направления внешнего воздействия. Признаком аморфного тела являются неправильная форма поверхности при изломе. Аморфные по происшествию тела после длительного промежутка времени все же меняют свою форму под действием силы тяжести. Этим они похожи на жидкости. При повышении температуры такое изменение формы происходит быстрее. Аморфное состояние неустойчиво, происходит переход аморфного состояния в кристаллическое. (Стекло мутнеет.)

Кристаллические тела. При наличии периодичности в расположении атомов (дальнего порядка) твердое тело является кристаллическим.

Если рассмотреть при помощи лупы или микроскопа крупинки соли, то можно заметить, что они ограничены плоскими гранями. Наличие таких граней - признак нахождения в кристаллическом состоянии.

Тело, представляющее собой один кристалл, называется монокристаллом. Большинство кристаллических тел состоит из множества расположенных беспорядочно мелких кристаллов, которые срослись между собой. Такие тела называются поликристаллами. Кусок сахара - поликристаллическое тело. Кристаллы различных веществ имеют разнообразную форму. Размеры кристаллов тоже разнообразны. Размеры кристаллов поликристаллического типа могут изменяться с течением времени. Мелкие кристаллы железа переходят в крупные, этот процесс ускоряется при ударах и сотрясениях, он происходит в стальных мостах, железнодорожных рельсах и т. д., от этого прочность сооружения с течением времени уменьшается.



Очень многие тела одинакового химического состава в кристаллическом состоянии в зависимости от условий могут существовать в двух или более разновидностях. Это свойство называется полиморфизмом. У льда известно до десяти модификаций. Полиморфизм углерода - графит и алмаз.

Существенным свойством монокристалла является анизотропия - неодинаковость его свойств (электрические, механические и т. д.) по различным направлениям.

Поликристаллические тела изотропны, т. е. обнаруживают одинаковые свойства по всем направлениям. Объясняется это тем, что кристаллы, из которых состоит поликристаллическое тело, ориентированы друг по отношению к другу хаотически. В результате ни одно из направлений не отличается от других.

Созданы композиционные материалы, механические свойства которых превосходят естественные материалы. Композиционные материалы (композиты) состоят из матрицы и наполнителей. В качестве матрицы применяются полимерные, металлические, углеродные или керамические материалы. Наполнители могут состоять из нитевидных кристаллов, волокон или проволоки. В частности, к композиционным материалам относят железобетон и железографит.

Железобетон - один из основных видов строительных материалов. Он представляет собой сочетание бетона и стальной арматуры.

Железографит - металлокерамический материал, состоящий из железа (95-98 %) и графита (2-5 %). Из него изготавливают подшипники, втулки для разных узлов машин и механизмов.

Стеклопластик - также композиционный материал, представляющий собой смесь стеклянных волокон и отвердевшей смолы.

Кости человека и животных представляют собой композиционный материал, состоящий из двух совершенно различных компонентов: коллагена и минерального вещества.

>>Физика: Аморфные тела

Не все твердые тела - кристаллы. Существует множество аморфных тел. Чем они отличаются от кристаллов?
У аморфных тел нет строгого порядка в расположении атомов. Только ближайшие атомы-соседи располагаются в некотором порядке. Но строгой повторяемости по всем направлениям одного и того же элемента структуры, которая характерна для кристаллов , в аморфных телах нет.
По расположению атомов и по их поведению аморфные тела аналогичны жидкостям.
Часто одно и то же вещество может находиться как в кристаллическом, так и в аморфном состоянии. Например, кварц SiO 2 может быть как в кристаллической, так и в аморфной форме (кремнезем). Кристаллическую форму кварца схематически можно представить в виде решетки из правильных шестиугольников (рис.12.6, а ). Аморфная структура кварца также имеет вид решетки, но неправильной формы. Наряду с шестиугольниками в ней встречаются пяти- и семиугольники (рис.12.6, б ).
Свойства аморфных тел. Все аморфные тела изотропны, т. е. их физические свойства одинаковы по всем направлениям. К аморфным телам относятся стекло, смола, канифоль, сахарный леденец и др.
При внешних воздействиях аморфные тела обнаруживают одновременно упругие свойства, подобно твердым телам, и текучесть, подобно жидкости. Так, при кратковременных воздействиях (ударах) они ведут себя как твердые тела и при сильном ударе раскалываются на куски. Но при очень продолжительном воздействии аморфные тела текут. В этом вы можете убедиться сами, если запасетесь терпением. Проследите за куском смолы, который лежит на твердой поверхности. Постепенно смола по ней растекается, и, чем выше температура смолы, тем быстрее это происходит.
Атомы или молекулы аморфных тел, подобно молекулам жидкости, имеют определенное время «оседлой жизни» - время колебаний около положения равновесия. Но в отличие от жидкостей это время у них весьма велико.
Так, для вара при t = 20°С время «оседлой жизни» примерно 0,1 с. В этом отношении аморфные тела близки к кристаллическим, так как перескоки атомов из одного положения равновесия в другое происходят сравнительно редко.
Аморфные тела при низких температурах по своим свойствам напоминают твердые тела. Текучестью они почти не обладают, но по мере повышения температуры постепенно размягчаются и их свойства все более и более приближаются к свойствам жидкостей. Это происходит потому, что с ростом температуры постепенно учащаются перескоки атомов из одного положения равновесия в другое. Определенной температуры плавления у аморфных тел, в отличие от кристаллических, нет.
Жидкие кристаллы. В природе встречаются вещества, обладающие одновременно основными свойствами кристалла и жидкости, а именно анизотропией и текучестью. Такое состояние вещества называется жидкокристаллическим . Жидкими кристаллами являются в основном органические вещества, молекулы которых имеют длинную нитевидную форму или форму плоских пластин.
Рассмотрим наиболее простой случай, когда жидкий кристалл образуется нитевидными молекулами. Эти молекулы расположены параллельно друг другу, однако беспорядочно сдвинуты, т. е. порядок, в отличие от обычных кристаллов, существует только в одном направлении.
При тепловом движении центры этих молекул движутся хаотически, однако ориентация молекул не изменяется, и они остаются параллельны самим себе. Строгая ориентация молекул существует не во всем объеме кристалла, а в небольших областях, называемых доменами. На границе доменов происходит преломление и отражение света, поэтому жидкие кристаллы непрозрачны. Однако в слое жидкого кристалла, помещенном между двумя тонкими пластинами, расстояния между которыми 0,01-0,1 мм, с параллельными углублениями 10-100 нм, все молекулы будут параллельны и кристалл станет прозрачным. Если на какие-то участки жидкого кристалла подать электрическое напряжение, то жидкокристаллическое состояние нарушается. Эти участки становятся непрозрачными и начинают светиться, а участки без напряжения остаются темными. Это явление используется при создании жидкокристаллических экранов телевизоров. Нужно отметить, что сам экран состоит из огромного числа элементов и электронная схема управления таким экраном чрезвычайно сложна.
Физика твердого тела. Человечество всегда использовало и будет использовать твердые тела. Но если раньше физика твердого тела отставала от развития технологии, основанной на непосредственном опыте, то теперь положение изменилось. Теоретические исследования приводят к созданию твердых тел, свойства которых совершенно необычны.
Получить такие тела методом проб и ошибок было бы невозможно. Создание транзисторов, о которых пойдет речь в дальнейшем, - яркий пример того, как понимание структуры твердых тел привело к революции во всей радиотехнике.
Получение материалов с заданными механическими, магнитными, электрическими и другими свойствами - одно из основных направлений современной физики твердого тела. Примерно половина физиков мира работают сейчас в этой области физики .
Аморфные тела занимают промежуточное положение между кристаллическими твердыми телами и жидкостями. Их атомы или молекулы располагаются в относительном порядке. Понимание структуры твердых тел (кристаллических и аморфных) позволяет создавать материалы с заданными свойствами.

???
1. Чем отличаются аморфные тела от кристаллических?
2. Приведите примеры аморфных тел.
3. Возникла ли бы профессия стеклодува, если бы стекло было кристаллическим телом, а не аморфным?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

ФИЗИКА 8 КЛАСС

Доклад на тему:

“Аморфные тела. Плавление аморфных тел.”

ученица 8 “б” класса:

2009

Аморфные тела.

Проделаем опыт. Нам понадобятся кусок пластилина, стеариновая свеча и электрокамин. Поставим пластилин и свечу на равных расстояниях от камина. По прошествии некоторого времени часть стеарина расплавится (станет жидкостью), а часть – останется в виде твердого кусочка. Пластилин за то же время лишь немного размягчится. Еще через некоторое время весь стеарин расплавится, а пластилин – постепенно "разъедется" по поверхности стола, все более и более размягчаясь.

Итак, существуют тела, которые при плавлении не размягчаются, а из твердого состояния превращаются сразу в жидкость. Во время плавления таких тел всегда можно отделить жидкость от еще не расплавившейся (твердой) части тела. Эти тела – кристаллические. Существуют также твердые тела, которые при нагревании постепенно размягчаются, становятся все более текучими. Для таких тел невозможно указать температуру, при которой они превращаются в жидкость (плавятся). Эти тела называют аморфными.

Проделаем следующий опыт. В стеклянную воронку бросим кусок смолы или воска и оставим в теплой комнате. По прошествии примерно месяца окажется, что воск принял форму воронки и даже начал вытекать из нее в виде "струи" (Рис.1). В противоположность кристаллам, которые почти вечно сохраняют собственную форму, аморфные тела даже при невысоких температурах обладают текучестью. Поэтому их можно рассматривать как очень густые и вязкие жидкости.

Строение аморфных тел. Исследования при помощи электронного микроскопа, а также при помощи рентгеновских лучей свидетельствуют, что в аморфных телах не наблюдается строгого порядка в расположении их частиц. Взгляните, на рисунке 2 изображено расположение частиц в кристаллическом кварце, а на правом – в аморфном кварце. Эти вещества состоят из одних и тех же частиц – молекул оксида кремния SiO 2 .

Кристаллическое состояние кварца получается, если расплавленный кварц охлаждать медленно. Если же охлаждение расплава будет быстрым, то молекулы не успеют "выстроиться" в стройные ряды, и получится аморфный кварц.

Частицы аморфных тел непрерывно и беспорядочно колеблются. Они чаще, чем частицы кристаллов могут перескакивать с места на место. Этому способствует и то, что частицы аморфных тел расположены неодинаково плотно: между ними имеются пустоты.

Кристаллизация аморфных тел. С течением времени (несколько месяцев, лет) аморфные вещества самопроизвольно переходят в кристаллическое состояние. Например, сахарные леденцы или свежий мед, оставленные в покое в теплом месте, через несколько месяцев становятся непрозрачными. Говорят, что мед и леденцы "засахарились". Разломив леденец или зачерпнув мед ложкой, мы действительно увидим образовавшиеся кристаллики сахара.

Самопроизвольная кристаллизация аморфных тел свидетельствует, что кристаллическое состояние вещества является более устойчивым, чем аморфное. Межмолекулярная теория объясняет это так. Межмолекулярные силы притяжения-отталкивания заставляют частицы аморфного тела перескакивать преимущественно туда, где имеются пустоты. В результате возникает более упорядоченное, чем прежде расположение частиц, то есть образуется поликристалл.

Плавление аморфных тел.

По мере возрастания температуры энергия колебательного движения атомов в твёрдом теле возрастает и, наконец, наступает такой момент, когда связи между атомами начинают разрываться. При этом твердое тело переходит в жидкое состояние. Такой переход называется плавлением. При фиксированном давлении плавление происходит при строго определённой температуре.

Количество тепла, необходимое для превращения единицы массы вещества в жидкость при температуре плавления, называют удельной теплотой плавления λ .

Для плавления вещества массой m необходимо затратить количество теплоты равное:

Q = λ · m .

Процесс плавления аморфных тел отличается от плавления кристаллических тел. При повышении температуры аморфные тела постепенно размягчаются, становятся вязкими, до тех пор, пока не превратятся в жидкость. Аморфные тела в противоположность кристаллам не имеют определенной температуры плавления. Температура аморфных тел при этом изменяется непрерывно. Это происходит потому, что в аморфных твердых телах, как и в жидкостях, молекулы могут перемещаться друг относительно друга. При нагревании их скорость увеличивается, увеличивается расстояние между ними. В результате тело становится все мягче и мягче, пока не превратится в жидкость. При отвердевании аморфных тел их температура также понижается непрерывно.

Твердые тела разделяют на аморфные и кристаллические, в зависимости от их молекулярной структуры и физических свойств.

В отличие от кристаллов молекулы и атомы аморфных твердых тел не формируют решетку, а расстояние между ними колеблется в пределах некоторого интервала возможных расстояний. Иначе говоря, у кристаллов атомы или молекулы взаимно расположены таким образом, что формируемая структура может повторяться во всем объеме тела, что называется дальним порядком. В случае же с аморфными телами – сохраняется структура молекул лишь относительно каждой одной такой молекулы, наблюдается закономерность в распределении только соседних молекул – ближний порядок. Наглядный пример представлен ниже.

К аморфным телам относится стекло и другие вещества в стеклообразном состоянии, канифоль, смолы, янтарь, сургуч, битум, воск, а также органические вещества: каучук, кожа, целлюлоза, полиэтилен и др.

Свойства аморфных тел

Особенность строения аморфных твердых тел придает им индивидуальные свойства:

  1. Слабо выраженная текучесть – одно из наиболее известных свойств таких тел. Примером будут потеки стекла, которое долгое время стоит в оконной раме.
  2. Аморфные твердые тела не обладают определенной температурой плавления, так как переход в состояние жидкости во время нагрева происходит постепенно, посредством размягчения тела. По этой причине к таким телам применяют так называемый температурный интервал размягчения.

  1. В силу своей структуры такие тела являются изотропными, то есть их физические свойства не зависят от выбора направления.
  2. Вещество в аморфном состоянии обладает большей внутренней энергией, нежели в кристаллическом. По этой причине аморфные тела способны самостоятельно переходить в кристаллическое состояние. Данное явление можно наблюдать как результат помутнения стекол с течением времени.

Стеклообразное состояние

В природе существуют жидкости, которые практически невозможно перевести в кристаллическое состояние посредством охлаждения, так как сложность молекул этих веществ не позволяет им образовать регулярную кристаллическую решетку. К таким жидкостям относятся молекулы некоторых органических полимеров.

Однако, при помощи глубокого и быстрого охлаждения, практически любое вещество способно перейти в стеклообразное состояние. Это такое аморфное состояние, которое не имеет явной кристаллической решетки, но может частично кристаллизироваться, в масштабах малых кластеров. Данное состояние вещества является метастабильным, то есть сохраняется при некоторых требуемых термодинамических условиях.

При помощи технологии охлаждения с определенной скоростью вещество не будет успевать кристаллизоваться, и преобразуется в стекло. То есть чем выше скорость охлаждения материала, тем меньше вероятность его кристаллизации. Так, например, для изготовления металлических стекол потребуется скорость охлаждения, равная 100 000 – 1 000 000 Кельвин в секунду.

В природе вещество существует в стеклообразном состоянии возникает из жидкой вулканической магмы, которая, взаимодействуя с холодной водой или воздухом, быстро охлаждается. В данном случае вещество зовется вулканическим стеклом. Также можно наблюдать стекло, образованная в результате плавления падающего метеорита, взаимодействующего с атмосферой – метеоритное стекло или молдавит.

Твёрдое тело является одним из четырёх фундаментальных состояний материи, кроме жидкости, газа и плазмы. Оно характеризуется структурной жёсткостью и устойчивостью к изменению формы или объёма. В отличие от жидкости, твёрдый объект не течёт, не принимает форму контейнера, в который его помещают. Твёрдое тело не расширяется, чтобы заполнить весь доступный объём, как это делает газ.
Атомы в твёрдом теле тесно связаны друг с другом, находятся в упорядоченном состоянии в узлах кристаллической решётки (это металлы, обычный лёд, сахар, соль, алмаз), или располагаются нерегулярно, не имеют строгой повторяемости в структуре кристаллической решётки (это аморфные тела, такие как оконное стекло, канифоль, слюда или пластмасса).

Кристаллические тела

Кристаллические твёрдые тела или кристаллы имеют отличительную внутреннюю особенность - структуру в виде кристаллической решётки, в которой определённое положение занимают атомы, молекулы или ионы вещества.
Кристаллическая решётка приводит к существованию особенных плоских граней у кристаллов, которые отличают одно вещество от другого. При воздействии рентгеновских лучей, каждая кристаллическая решётка излучает характерный рисунок, который можно использовать для идентификации вещества. Грани кристаллов пересекаются под определёнными углами, отличающими одно вещество от другого. Если кристалл расщепить, то новые грани будут пересекаться под теми же углами, что у исходного.


Например, galena - галенит, pyrite - пирит, quartz - кварц. Грани кристалла пересекаются под прямым углом в галените (PbS) и пирите (FeS 2), под другими углами в кварце.

Свойства кристаллов

  • постоянный объём;
  • правильная геометрическая форма;
  • анизотропия - различие механических, световых, электрических и тепловых свойств от направления в кристалле;
  • чётко определённая температура плавления, так как она зависит от регулярности кристаллической решётки. Межмолекулярные силы, удерживающие твёрдое вещество вместе, однородны, и требуется одинаковое количество тепловой энергии, чтобы одновременно разорвать каждое взаимодействие.

Аморфные тела

Примерами аморфных тел, не имеющих строгой структуры и повторяемости ячеек кристаллической решётки, являются: стекло, смола, тефлон, полиуретан, нафталин, поливинилхлорид.



Они имеют два характерных свойства: изотропность и отсутствие определённой температуры плавления.
Изотропность аморфных тел понимают, как одинаковость физических свойств вещества по всем направлениям.
В аморфном твёрдом теле расстояние до соседних узлов кристаллической решётки и количество соседних узлов изменяется по всему материалу. Поэтому, чтобы разорвать межмолекулярные взаимодействия, требуется различное количество тепловой энергии. Следовательно, аморфные вещества медленно размягчаются в широком диапазоне температур и не имеют чёткой температуры плавления.
Особенностью аморфных твёрдых тел является то, что при низких температурах они имеют свойства твёрдых тел, а при повышении температуры - свойства жидкостей.