Охарактеризуйте этапы диссимиляции на примере расщепления глюкозы. Какие типы биохимических реакций протекают в ассимиляции и диссимиляции

Обмен веществ и его типы

Он обеспечивает постоянство внутренней среды организма в изменяющихся условиях существования – гомеостаз . Обмен веществ слагается из двух взаимосвязанных и взаимопротивоположных процессов. Это процессы диссимиляции , в которых происходит расщепление органических веществ и выделенная энергия используется для синтеза молекул АТФ, и процессы ассимиляции, в которых энергия АТФ используется для синтеза собственных, необходимых организму соединений.

Процессы диссимиляции называют, также, катаболизмом и энергетическим обменом . А процессы ассимиляции носят еще названия анаболизма и пластического обмена . Такое обилие синонимов одного и того же понятия возникло потому, что реакции обмена веществ изучали ученые различных специальностей:

  • биохимики,
  • физиологи,
  • цитологии,
  • генетики,
  • молекулярные биологи.

Но все названия и термины прижились и активно используются учеными.

Формы поступления энергии в живые организмы

Для всех живых организмов Земли Солнце является основным источником энергии. Именно благодаря ему организмы удовлетворяют свои энергетические потребности.

Организмы, которые могут синтезировать органические соединения из неорганических, называются автотрофами. Они разделяются на две группы. Одни способны использовать энергию солнечного света. Это – фотосинтетики или фототрофы. В основном это - зеленые растения, цианобактерии (сине-зеленые водоросли).

Другая группа автотрофов использует энергию, которая освобождается во время химических реакций. Такие организмы называются хемотрофами или хемосинтетиками.

Грибы, большая часть животных и бактерий не могут сами синтезировать органические вещества. Такие организмы называются гетеротрофами. Для них источником энергии служат органические соединения, синтезированные автотрофами. Энергия используется живыми организмами для химических, механических, тепловых и электрических процессов.

Подготовительный этап энергетического обмена

Энергетический обмен принято условно разделять на три основных этапа. Первый этап назвали подготовительным. На этом этапе макромолекулы под воздействием ферментов расщепляются до мономеров. В ходе реакций происходит выделение довольно незначительного количества энергии, которое рассеивается в виде тепла.

Бескислородный этап энергетического обмена

Бескислородный (анаэробный) этап энергетического обмена происходит в клетках. Мономеры, которые образовались на предыдущем этапе (глюкоза, глицерин и т.п.), подвергаются дальнейшему многоступенчатому расщеплению без доступа кислорода. Главным на этом этапе является процесс расщепления молекулы глюкозы на молекулы пировиноградной или молочной кислоты с образованием двух молекул АТФ.

$C_6H_{12}O_6 + 2H_3PO_4 + 2АДФ → 2C_3H_6O_3 + 2АТФ + 2H_2O$

В ходе этой реакции (реакция гликолиза) выделяется около $200$ кДж энергии. Однако она не вся превращается в тепло. Часть ее используется для синтеза двух, богатых на энергию (макроэргических), фосфатных связей в молекулах АТФ. Глюкоза также расщепляется в ходе спиртового брожения.

$C_6H_{12}O_6 + 2H_3PO_4 + 2АДФ → 2C_2H_5OH + 2CO_2 + 2АТФ + 2H_2O$

Кроме спиртового существуют еще такие виды бескислородного брожения, как маслянокислое и молочнокислое.

Кислородный этап энергетического обмена

На этом этапе соединения, образованные на бескислородном этапе, окисляются до конечных продуктов реакции – углекислого газа и воды. Английский биохимик Адольф Кребс в $1937$ году открыл последовательность превращений органических кислот в матриксе митохондрий. В его честь совокупность этих реакций назвали циклом Кребса.

Замечание 1

Полное окисление молекул молочной или пировиноградной кислоты, образованных в ходе анаэробного процесса, до углекислого газа и воды сопровождается выделением $2800$ кДЖ энергии. Этого количества хватит на синтез $36$ молекул АТФ (в $18$ раз больше, чем на предыдущем этапе).

Суммарное уравнение кислородного этапа энергетического обмена выглядит так:

$2C_3H_6O_3 + 6O_2 + 36АДФ + 36H_3PO_4 → 6CO_2 + 42H_2O + 36АТФ$

Подводя общий итог, можно записать суммарное уравнение энергетического обмена:

$C_6H_{12}O_6 + 6O_2 + 38АДФ + 38H_3PO_4 → 6CO_2 + 44H_2O + 38АТФ$

На завершающей стадии происходит выведение продуктов метаболизма из организма.

Вопрос 1. Что такое диссимиляция? Перечис­лите ее этапы.

Диссимиляция, или энергетический об­мен, — это совокупность реакций расщепле­ния высокомолекулярных соединений, кото­рые сопровождаются выделением и запасани­ем энергии.

Диссимиляция у аэробных (кислорододы­шащих) организмов происходит в три этапа: подготовительный — расщепление вы­сокомолекулярных соединений до низкомоле­кулярных без запасания энергии;

бескислородный — частичное бескисло­родное расщепление соединений, энергия за­пасается в виде АТФ;

кислородный — окончательное расщепле­ние органических веществ до углекислого газа и воды, энергия также запасается в виде АТФ.

Диссимиляция у анаэробных (не исполь­зующих кислород) организмов происходит в два этапа: подготовительный и бескислород­ный. В данном случае органические вещества расщепляются не полностью и энергии запаса­ется гораздо меньше.

Вопрос 2. В чем заключается роль АТФ в обме­не веществ в клетке?

АТФ (аденозинтрифосфорная кислота) — нуклеотид, состоящий из азотистого основа­ния (аденина), пятиуглеродного моносахарида (рибозы) и трех остатков фосфорной кислоты. Это универсальное, встречающееся в самых разных клетках макроэргическое соединение, в котором между остатками фосфорной кисло­ты присутствуют две высокоэнергетические связи. При разрыве такой связи отщепляется остаток фосфорной кислоты и высвобождается большое количество энергии (40 кДж/моль). При этом АТФ превращается в АДФ. Если произойдет отщепление второго остатка фос­форной кислоты, АДФ превратится в АМФ. Все процессы в живых организмах, требую­щие затрат энергии, сопровождаются пре­вращением молекул АТФ в АДФ (или даже в АМФ).

Вопрос 3. Какие структуры клетки осуществля­ют синтез АТФ?

В эукариотических клетках синтез основ­ной массы АТФ из АДФ и фосфорной кислоты происходит в митохондриях и сопровождается поглощением (запасанием) энергии. В пласти­дах АТФ образуется как промежуточный про­дукт световой стадии фотосинтеза.

Вопрос 4. Расскажите об энергетическом обме­не в клетке на примере расщепления глюкозы.

Энергетический обмен у аэробных организ­мов происходит в три этапа.

Подготовительный. В желудочно-кишечном тракте и лизосомах клеток под дейст­вием пищеварительных ферментов полисаха­риды расщепляются до моносахаридов, в част­ности до глюкозы. Выделяющаяся при этом энергия не запасается, а рассеивается в виде тепла.

Бескислородный. В результате гликолиза одна молекула глюкозы расщепляется до двух молекул пировиноградной кислоты:

C 6 Hi 2 0 6 -> 2С 3 Н 4 0 3

При этом 60% выделившейся энергии пре­вращается в тепло, а 40% запасается в виде АТФ. При распаде одной молекулы глюкозы образуется 2 молекулы АТФ. Затем у анаэроб­ных организмов происходит брожение — спиртовое (С 2 Н 5 ОН — этиловый спирт) или мо­лочнокислое (С 3 Н 6 0 3 — молочная кислота). У аэробных организмов наступает третий этап энергетического обмена.

Кислородный. На этом этапе входящие в состав пировиноградной кислоты углерод и во­дород соединяются с кислородом с образовани­ем углекислого газа и воды. При этом осво­бождается большое количество энергии, боль­шая часть которой запасается в виде АТФ. При окислении двух молекул пировиноград­ной кислоты выделяется энергия, позволяю­щая образовать 36 молекул АТФ. Процесс этот идет в митохондриях и делится на две много­ступенчатые стадии (цикл Кребса и окисли­тельное фосфорилирование).

Итоговое уравнение кислородного пути диссимиляции:

С 6 Н 12 0 6 + 6O 2 + 38АДФ + 38Ф ->

Диссимиляция (катаболизм) - совокупность процессов, при которых происходит окисление сложных органических веществ и превращение их в неорганические (воду, углекислый газ, мочевину (простое органическое вещество) и др.), сопровождающееся синтезом АТФ, которая используется организмом в процессах ассимиляции и других процессах жизнедеятельности организма.

Главной функцией процессов диссимиляции в организме является перевод энергии из «неудобной» организму формы (энергии химических связей сложных органических веществ - белков, углеводов, жиров) в «удобную» форму - макроэргические связи соединения типа АТФ и АДФ, которых за счет процессов фосфорилирования легко переходит от одного соединения к другому. Это одна из биолого-экологических функций ассимиляции. Другой такой функцией является реализация круговорота веществ, когда органические вещества превращаются в неорганические, а последние вновь вступают в круговорот, участвуя в образовании органических веществ.

Перевод энергии из «неудобной» для организма формы в «удобную» происходит за счет превращения сначала АМФ в АДФ, а затем АДФ в АТФ.

Превращения аденозинфосфатов с образованием макроэргических связей выражаются схемами: АМФ + Н 3 РO 4 → АДФ + Н 2 O (поглощение энергии); АДФ + Н 3 РO 4 = АТФ + Н 2 O (поглощение энергии).

В результате процессов диссимиляции накапливается АТФ, которая затем используется в процессах ассимиляции, а энергия, заключенная в макроэргических связях молекул АТФ, передается на другие молекулы либо за счет процессов фосфорилирования (остаток переходит с молекулы АТФ на другие молекулы), либо за счет гидролиза АТФ и ее превращения в АДФ и фосфорную кислоту.

Организмы по характеру участия в процессах диссимиляции молекулярного кислорода делятся на анаэробные (бескислородные) и аэробные (кислородные). В анаэробных организмах диссимиляция осуществляется за счет брожения, а в аэробных - за счет в широком понимании сущности этого понятия.

Брожение - совокупность процессов разложения сложных органических веществ до более простых, сопровождающаяся выделением энергии и синтезом АТФ.

В природе наиболее распространенными видами брожения являются молочнокислое и спиртовое. Как способ «извлечения» энергии брожение - малоэффективный процесс: так, при молочнокислом брожении из 1 моль глюкозы образуется 2 моль АТФ.

1. Молочнокислое брожение - анаэробный процесс распада глюкозы до молочной кислоты. Выражается схемой:

С 6 Н 12 O 6 (глюкоза) → 2СН 3 СН(ОН)СООН (молочная кислота)

(выделяется энергия, под действием которой синтезируется две молекулы АТФ).

Этот вид брожения характерен для молочнокислых бактерий, в присутствии которых происходит скисание молока.

Молочнокислое брожение является одной из стадий процесса дыхания (в широком смысле) у аэробных организмов, в том числе и у человека.

2. Спиртовое брожение - аэробный процесс распада глюкозы, сопровождающийся образованием этилового спирта и углекислого газа; протекает по схеме:

С 6 Н 12 О 6 (глюкоза) → 2СО 2 + 2С 2 Н 5 ОН (этиловый спирт)

(выделяется энергия, используемая для синтеза АТФ).

Этот вид брожения происходит в плодах, в других органах растения, находящихся в анаэробной среде.

В природе наиболее широкое распространение имеет другой способ диссимиляции - дыхание, которое реализуется в окислительной среде, т. е. среде, содержащей молекулярный кислород. Процесс дыхания состоит из двух частей: газообмена и сложной последовательности биохимических процессов окисления органических соединений, конечными продуктами которых являются углекислый газ, аммиак (превращается в другие вещества) и некоторые другие соединения (сероводород, неорганические соединения фосфора и др.).

В обиходе дыхание рассматривается как процесс газообмена (это понимание понятия «дыхания» в узком смысле). Так, зоологи в организмах высших животных выделяют систему органов дыхания - в этих органах осуществляется газообмен, в результате которого из организма удаляется СО 2 , а в организм поступает О 2 (мы «дышим», т. е. выделяем углекислый газ и поглощаем молекулярный кислород).

В данном пособии дыхание рассматривается в широком смысле этого слова как совокупность процессов газообмена, перенесения газов по организму и совокупность химических процессов, при которых сложные органические вещества превращаются в неорганические, при этом энергия усваивается организмом в форме АТФ, синтезирующейся в процессе диссимиляции.

Итак, процесс дыхания в широком смысле состоит из двух фаз: газообмена и совокупности химических процессов освобождения энергии и синтеза АТФ. Кратко охарактеризуем эти фазы.

1. Газообмен.

Для одноклеточных и относительно просто устроенных организмов (как растительных, так животных и грибов) газообмен протекает на всей поверхности тела: кислород поступает в клетки, а углекислый газ выделяется в окружающую среду. У высших растений роль органов дыхания играют или устьица(листья), или особо устроенные поры (чечевички) в коре многолетних органов (стебли, корни), кроме того, корни поглощают кислород и выделяют углекислый газ корневыми волосками. У высокоорганизованных многоклеточных животных имеются сложно устроенные органы дыхания - это или жабры (у водных животных), или легкие (высшие животные типа Позвоночные), или система трахей (насекомые).

Рассмотрим газообмен на примере человека - представителя типа Позвоночные. Этот процесс протекает достаточно сложно и начинается в легких, в которых в капиллярах альвеол кровь, обогащенная СO 2 (венозная ), контактирует с воздухом, богатым кислородом (поступил в легкие во время вдоха), за счет чего в легких выделяется углекислый газ, а молекулярный кислород взаимодействует с гемоглобином крови, образуя соединение алого цвета - оксигемоглобин (О 2 вытесняет СО 2 из его соединения с гемоглобином). В полость легких диффундирует и СО 2 , содержащийся в плазме крови. Возникшая артериальная кровь по венам легких поступает в левое предсердие, а из него - в левый желудочек и аорту. Далее кровь по кровеносным сосудам разносится к тканям различных органов и через капилляры в тканях углекислый газ из тканевой жидкости (в тканевую жидкость СО 2 поступил из клеток) поступает в эритроциты крови, частично реагируя с оксигемоглобином, а частично растворяясь в плазме клетки. Молекулярный кислород диффундирует сначала в тканевую жидкость, а потом - в клетки. В результате охарактеризованных процессов в тканях образуется венозная кровь, которая из капилляров поступает в вены, а затем - в правое предсердие, правый желудочек, из которого через легочные артерии поступает в легкие и процесс повторяется.

2. Характеристика химических процессов окисления при диссимиляции.

Химизм «освобождения энергии», содержащейся в сложных биохимических соединениях, сложен и протекает в три этапа.

1 этап - подготовительный.

Этот этап протекает в любом организме и состоит в том, что сложные органические вещества превращаются в более простые ( - в смесь природных альфа-аминокислот; полисахара - в моносахара; - в смесь глицерина и жирных кислот). При протекании данного этапа выделяется небольшое количество энергии, которую организм практически не использует - она рассеивается.

2 этап - анаэробный.

Он представляет собой процессы брожения. Наиболее важным процессом брожения является молочнокислое брожение, которое можно изобразить схемой:

С 6 Н 12 О 6 (глюкоза) + 2АДФ + 2Н 3 РО 4 → 2 АТФ + 2Н 2 О + СН 3 СН(ОН)СООН (молочная кислота)

Этот этап необходим организмам для реализации их физиологических функций (совершение механической работы, перемещения организма в пространстве и т. д.). Кроме того, молочная кислота является веществом, вступающим в третий этап.

3 этап - аэробный.

Для осуществления этого этапа необходим молекулярный кислород. Он реализуется в особых органоидах клетки - митохондриях (их образно называют «энергетическими станциями клетки»). Аэробный этап представляет собой сложнейшую цепь превращений, в результате которых образуются неорганические вещества. Если превращениям подвергалась глюкоза, то схематически аэробный этап можно изобразить так:

2СН 3 СН(ОН)СООН (молочная кислота) + 6О 2 + 36 АДФ + 36 Н 3 Р04 6СО 2 + 42Н 2 О + 36АТФ

Две молекулы молочной кислоты взяты потому, что из одной молекулы глюкозы при молочнокислом брожении образуется две молекулы кислоты.

Итак, при полном распаде одной молекулы глюкозы до СО 2 и Н 2 О синтезируется 38 (36+2) молекул АТФ, что соответствует 55%-му усвоению энергии, которая выделяется при полном окислении глюкозы до указанных выше продуктов.

Завершая рассмотрение процессов диссимиляции следует отметить различие в газообмене растений и животных, а для газообмена растений - различие газообмена днем и ночью. Следует помнить, что и у растений и у животных ночью газообмен одинаков - организм поглощает кислород и выделяет в среду обитания СО 2 . Днем газообмен у растений состоит в том, что растение на свету поглощает СО 2 , а выделяет в среду обитания О 2 (у животных наоборот - выделяется СО 2 , а поглощается кислород). Из вышесказанного следует экологический вывод об особенностях жилища: в спальне не следует держать много растений (Обоснуйте почему).

Организмы могут быть разделены на две группы и по характеру диссимиляции – аэробы и анаэробы. Аэробы нуждаются в свободном кислороде для жизнедеятельности. У анаэробов в нем нет необходимости. У них диссимиляция осуществляется путем брожения – бескислородного, ферментативного расщепления органического вещества с образованием более простых органических же веществ и выделением энергии. Например:

> молочнокислое брожение:

> спиртовое брожение:

Образующиеся при брожении вещества являются органическими и, следовательно, содержат еще много энергии.

Энергетический обмен (диссимиляция) – это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Процессы расщепления органических соединений у аэробных организмов происходят в три этапа , каждый из которых сопровождается несколькими ферментативными реакциями.

Первый этап подготовительный . В желудочно-кишечном тракте многоклеточных организмов он осуществляется пищеварительными ферментами. У одноклеточных – ферментами лизосом. На первом этапе происходит расщепление белков до аминокислот, жиров до глицерина и жирных кислот, полисахаридов до моносахаридов, нуклеиновых кислот до нуклеотидов. Этот процесс называется пищеварением.

Второй этап бескислородный (гликолиз ). Его биологический смысл заключается в начале постепенного расщепления и окисления глюкозы с накоплением энергии в виде 2 молекул АТФ.

Гликолиз происходит в цитоплазме клеток. Он состоит из нескольких последовательных реакций превращения молекулы глюкозы в две молекулы пировиноградной кислоты (пирувата) и две молекулы АТФ, в виде которой запасается часть энергии, выделившейся при гликолизе: С 6 Н 12 O 6 + 2АДФ + 2Ф → 2С 3 Н 4 O 3 + 2АТФ. Остальная энергия рассеивается в виде тепла.

В клетках дрожжей и растений (при недостатке кислорода ) пируват распадается на этиловый спирт и углекислый газ. Этот процесс называется спиртовым брожением .

Энергии, накопленной при гликолизе, слишком мало для организмов, использующих кислород для своего дыхания. Вот почему в мышцах животных, в том числе и у человека, при больших нагрузках и нехватке кислорода образуется молочная кислота (С 3 Н 6 O 3), которая накапливается в виде лактата, при это появляется боль в мышцах.

Третий этап кислородный , состоящий из двух последовательных процессов :

Цикла Кребса

Окислительного фосфорилирования.

Его смысл заключается в том, что при кислородном дыхании пируват окисляется до окончательных продуктов – углекислого газа и воды, а энергия, выделяющаяся при окислении, запасается в виде 36 молекул АТФ (34 молекулы в цикле Кребса и 2 молекулы в ходе окислительного фосфорилирования). Эта энергия распада органических соединений обеспечивает реакции их синтеза в пластическом обмене. Кислородный этап возник после накопления в атмосфере достаточного количества молекулярного кислорода и появления аэробных организмов.

Окислительное фосфорилирование (клеточное дыхание) происходит на внутренних мембранах митохондрий, в которые встроены молекулы-переносчики, которые транспортируют электроны к молекулярному кислороду. В ходе этой стадии часть энергии рассеивается в виде тепла, а часть расходуется на образование АТФ.

Суммарная реакция энергетического обмена:

С 6 Н 12 O 6 + 6O 2 → 6СO 2 + 6Н 2 O + 38АТФ.

Тематические задания

А1. Способ питания хищных животных называется

1) автотрофным

2) миксотрофным

3) гетеротрофным

4) хемотрофным

А2. Совокупность реакций обмена веществ называется:

1) анаболизм

2) ассимиляция

3) диссимиляция

4) метаболизм

А3. На подготовительном этапе энергетического обмена образуются:

1) 2 молекулы АТФ и глюкоза

2) 36 молекул АТФ и молочная кислота

3) аминокислоты, глюкоза, жирные кислоты

4) уксусная кислота и спирт

А4. Вещества, катализирующие биохимические реакции в организме, –

2) нуклеиновые кислоты

4) углеводы

А5. Процесс синтеза АТФ в ходе окислительного фосфорилирования происходит в:

1) цитоплазме

2) рибосомах

3) митохондриях

4) аппарате Гольджи

А6. Энергия АТФ, запасенная в процессе энергетического обмена, частично используется для реакций:

1) подготовительного этапа

2) гликолиза

3) кислородного этапа

4) синтеза органических соединений

А7. Продуктами гликолиза являются:

1) глюкоза и АТФ

2) СО 2 и вода

3) ПВК и АТФ

4) белки, жиры, углеводы

Часть В

В1. Выберите события, происходящие на подготовительном этапе энергетического обмена у человека

1) белки распадаются до аминокислот

2) глюкоза расщепляется до углекислого газа и воды

3) синтезируются 2 молекулы АТФ

4) гликоген расщепляется до глюкозы

5) образуется молочная кислота

6) липиды расщепляются до глицерина и жирных кислот

В2. Определите последовательность превращений куска сырого картофеля в процессе энергетического обмена в организме свиньи:

А) образование пирувата

Б) образование глюкозы

В) всасывание глюкозы в кровь

Г) образование углекислого газа и воды

Д) окислительное фосфорилирование и образование Н 2 О

Е) цикл Кребса и образование СО 2

Энергетический обмен (катаболизм, диссимиляция) — совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии. Энергия, освобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме АТФ и других высокоэнергетических соединений. АТФ — универсальный источник энергообеспечения клетки. Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования — присоединения неорганического фосфата к АДФ.

У аэробных организмов (живущих в кислородной среде) выделяют три этапа энергетического обмена: подготовительный, бескислородное окисление и кислородное окисление; у анаэробных организмов (живущих в бескислородной среде) и аэробных при недостатке кислорода — два этапа: подготовительный, бескислородное окисление.

Подготовительный этап

Заключается в ферментативном расщеплении сложных органических веществ до простых: белковые молекулы — до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Распад высокомолекулярных органических соединений осуществляется или ферментами желудочно-кишечного тракта или ферментами лизосом. Вся высвобождающаяся при этом энергия рассеивается в виде тепла. Образовавшиеся небольшие органические молекулы могут быть использованы в качестве «строительного материала» или могут подвергаться дальнейшему расщеплению.

Бескислородное окисление, или гликолиз

Этот этап заключается в дальнейшем расщеплении органических веществ, образовавшихся во время подготовительного этапа, происходит в цитоплазме клетки и в присутствии кислорода не нуждается. Главным источником энергии в клетке является глюкоза. Процесс бескислородного неполного расщепления глюкозы — гликолиз .

Потеря электронов называется окислением, приобретение — восстановлением, при этом донор электронов окисляется, акцептор восстанавливается.

Следует отметить, что биологическое окисление в клетках может происходить как с участием кислорода:

А + О 2 → АО 2 ,

так и без его участия, за счет переноса атомов водорода от одного вещества к другому. Например, вещество «А» окисляется за счет вещества «В»:

АН 2 + В → А + ВН 2

или за счет переноса электронов, например, двухвалентное железо окисляется до трехвалентного:

Fe 2+ → Fe 3+ + e — .

Гликолиз — сложный многоступенчатый процесс, включающий в себя десять реакций. Во время этого процесса происходит дегидрирование глюкозы, акцептором водорода служит кофермент НАД + (никотинамидадениндинуклеотид). Глюкоза в результате цепочки ферментативных реакций превращается в две молекулы пировиноградной кислоты (ПВК), при этом суммарно образуются 2 молекулы АТФ и восстановленная форма переносчика водорода НАД·Н 2:

С 6 Н 12 О 6 + 2АДФ + 2Н 3 РО 4 + 2НАД + → 2С 3 Н 4 О 3 + 2АТФ + 2Н 2 О + 2НАД·Н 2 .

Дальнейшая судьба ПВК зависит от присутствия кислорода в клетке. Если кислорода нет, у дрожжей и растений происходит спиртовое брожение, при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:

  1. С 3 Н 4 О 3 → СО 2 + СН 3 СОН,
  2. СН 3 СОН + НАД·Н 2 → С 2 Н 5 ОН + НАД + .

У животных и некоторых бактерий при недостатке кислорода происходит молочнокислое брожение с образованием молочной кислоты:

С 3 Н 4 О 3 + НАД·Н 2 → С 3 Н 6 О 3 + НАД + .

В результате гликолиза одной молекулы глюкозы высвобождается 200 кДж, из которых 120 кДж рассеивается в виде тепла, а 80% запасается в связях АТФ.

Кислородное окисление, или дыхание

Заключается в полном расщеплении пировиноградной кислоты, происходит в митохондриях и при обязательном присутствии кислорода.

Пировиноградная кислота транспортируется в митохондрии (строение и функции митохондрий — лекция №7). Здесь происходит дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) ПВК с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса. Идет дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную молекулу ПВК из митохондрии удаляется три молекулы СО 2 ; образуется пять пар атомов водорода, связанных с переносчиками (4НАД·Н 2 , ФАД·Н 2), а также одна молекула АТФ.

Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:

С 6 Н 12 О 6 + 6Н 2 О → 6СО 2 + 4АТФ + 12Н 2 .

Две молекулы АТФ образуются в результате гликолиза, две — в цикле Кребса; две пары атомов водорода (2НАДЧН2) образовались в результате гликолиза, десять пар — в цикле Кребса.

Последним этапом является окисление пар атомов водорода с участием кислорода до воды с одновременным фосфорилированием АДФ до АТФ. Водород передается трем большим ферментным комплексам (флавопротеины, коферменты Q, цитохромы) дыхательной цепи, расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, которые в матриксе митохондрий в конечном итоге соединяются с кислородом:

О 2 + e — → О 2 — .

Протоны закачиваются в межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя мембрана непроницаема для ионов водорода, с одной стороны она заряжается отрицательно (за счет О 2 —), с другой — положительно (за счет Н +). Когда разность потенциалов на внутренней мембране достигает 200 мВ, протоны проходят через канал фермента АТФ-синтетазы, образуется АТФ, а цитохромоксидаза катализирует восстановление кислорода до воды. Так в результате окисления двенадцати пар атомов водорода образуется 34 молекулы АТФ.