Что показывает коэффициент k. Линейная функция и её график

Инструкция

Существует несколько способов решения линейных функций. Приведем наиболее из них. Чаще всего используется пошаговый метод подстановки. В одном из уравнений необходимо выразить одну переменную через другую, и подставить в другое уравнение. И так до тех пор, пока в одном из уравнений не останется лишь одна переменная. Чтобы решить его необходимо с одной стороны знака равенства оставить переменную (она может быть с коэффициентом), а на другую сторону знака равенства все числовые данные, не забыв при переносе поменять знак числа на противоположный. Вычислив одну переменную, подставьте ее в другие выражения, продолжите вычисления по такому же алгоритму.

Для примера возьмем систему линейной функции , состоящую из двух уравнений:
2х+у-7=0;
х-у-2=0.
Из второго уравнения удобно выразить х:
х=у+2.
Как видите, при переносе из одной части равенства в другую, у и переменных поменялся знак, как и было описано выше.
Подставляем полученное выражение в первое уравнение, таким образом исключая из него переменную х:
2*(у+2)+у-7=0.
Раскрываем скобки:
2у+4+у-7=0.
Компонуем переменные и числа, складываем их:
3у-3=0.
Переносим в правую часть уравнения, меняем знак:
3у=3.
Делим на общий коэффициент, получаем:
у=1.
Подставляем полученное значение в первое выражение:
х=у+2.
Получаем х=3.

Еще один способ решения подобных - это почленное двух уравнений для получения нового с одной переменной. Уравнение можно умножить на определенный коэффициент, главное при этом умножить каждый член уравнения и не забыть , а затем сложить или вычесть одно уравнение из . Этот метод очень экономит при нахождении линейной функции .

Возьмем уже знакомую нам систему уравнений с двумя переменными:
2х+у-7=0;
х-у-2=0.
Легко заметить что коэффициент при переменной у идентичен в первом и втором уравнении и отличается лишь знаком. Значит, при почленном сложении двух этих уравнений мы получим новое, но уже с одной переменной.
2х+х+у-у-7-2=0;
3х-9=0.
Переносим числовые данные на правую сторону уравнения, меняя при этом знак:
3х=9.
Находим общий множитель, равный коэффициенту, стоящему при х и дели обе части уравнения на него:
х=3.
Полученный можно подставить в любое из уравнений системы, чтобы вычислить у:
х-у-2=0;
3-у-2=0;
-у+1=0;
-у=-1;
у=1.

Также вы можете вычислять данные, построив точный график. Для этого необходимо найти нули функции . Если одна из переменных равняется нулю, то такая функция называется однородной. Решив такие уравнения, вы получите две точки, необходимые и достаточные для построения прямой - одна из них будет располагаться на оси х, другая на оси у.

Берем любое уравнение системы и подставляем туда значение х=0:
2*0+у-7=0;
Получаем у=7. Таким образом первая точка, назовем ее А, будет иметь координаты А(0;7).
Для того чтобы вычислить точку, лежащую на оси х, удобно подставить значение у=0 во второе уравнение системы:
х-0-2=0;
х=2.
Вторая точка (В) будет иметь координаты В (2;0).
На координатной сетке отмечаем полученные точки и поводим через них прямую. Если вы построите ее довольно точно, другие значения х и у можно будет вычислять прямо по ней.

Определение линейной функции

Введем определение линейной функции

Определение

Функция вида $y=kx+b$, где $k$ отлично от нуля называется линейной функцией.

График линейной функции -- прямая. Число $k$ называется угловым коэффициентом прямой.

При $b=0$ линейная функция называется функцией прямой пропорциональности $y=kx$.

Рассмотрим рисунок 1.

Рис. 1. Геометрический смысл углового коэффициента прямой

Рассмотрим треугольник АВС. Видим, что$ВС=kx_0+b$. Найдем точку пересечения прямой $y=kx+b$ с осью $Ox$:

\ \

Значит $AC=x_0+\frac{b}{k}$. Найдем отношение этих сторон:

\[\frac{BC}{AC}=\frac{kx_0+b}{x_0+\frac{b}{k}}=\frac{k(kx_0+b)}{{kx}_0+b}=k\]

С другой стороны $\frac{BC}{AC}=tg\angle A$.

Таким образом, можно сделать следующий вывод:

Вывод

Геометрический смысл коэффициента $k$. Угловой коэффициент прямой $k$ равен тангенсу угла наклона этой прямой к оси $Ox$.

Исследование линейной функции $f\left(x\right)=kx+b$ и её график

Вначале рассмотрим функцию $f\left(x\right)=kx+b$, где $k > 0$.

  1. $f"\left(x\right)={\left(kx+b\right)}"=k>0$. Следовательно, данная функция возрастает на всей области определения. Точек экстремума нет.
  2. ${\mathop{lim}_{x\to -\infty } kx\ }=-\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=+\infty $
  3. График (рис. 2).

Рис. 2. Графики функции $y=kx+b$, при $k > 0$.

Теперь рассмотрим функцию $f\left(x\right)=kx$, где $k

  1. Область определения -- все числа.
  2. Область значения -- все числа.
  3. $f\left(-x\right)=-kx+b$. Функция не является ни четной, ни нечетной.
  4. При $x=0,f\left(0\right)=b$. При $y=0,0=kx+b,\ x=-\frac{b}{k}$.

Точки пересечения с осями координат: $\left(-\frac{b}{k},0\right)$ и $\left(0,\ b\right)$

  1. $f"\left(x\right)={\left(kx\right)}"=k
  2. $f^{""}\left(x\right)=k"=0$. Следовательно, функция не имеет точек перегиба.
  3. ${\mathop{lim}_{x\to -\infty } kx\ }=+\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=-\infty $
  4. График (рис. 3).

    1) Область определения функции и область значений функции .

    Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x ), при которых функция y = f(x) определена. Область значений функции - это множество всех действительных значений y , которые принимает функция.

    В элементарной математике изучаются функции только на множестве действительных чисел.

    2) Нули функции .

    Нуль функции – такое значение аргумента, при котором значение функции равно нулю.

    3) Промежутки знакопостоянства функции .

    Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.

    4) Монотонность функции .

    Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

    Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

    5) Четность (нечетность) функции .

    Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f(-x) = f(x) . График четной функции симметричен относительно оси ординат.

    Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f(-x) = - f(x ). График нечетной функции симметричен относительно начала координат.

    6) Ограниченная и неограниченная функции .

    Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.

    7) Периодическость функции .

    Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

    19. Основные элементарные функции, их свойства и графики. Применение функ-ций в экономике.

Основные элементарные функции. Их свойства и графики

1. Линейная функция.

Линейной функцией называется функция вида , где х - переменная, а и b - действительные числа.

Число а называют угловым коэффициентом прямой, он равен тангенсу угла наклона этой прямой к положительному направлению оси абсцисс. Графиком линейной функции является прямая линия. Она определяется двумя точками.

Свойства линейной функции

1. Область определения - множество всех действительных чисел: Д(y)=R

2. Множество значений - множество всех действительных чисел: Е(у)=R

3. Функция принимает нулевое значение при или.

4. Функция возрастает (убывает) на всей области определения.

5. Линейная функция непрерывная на всей области определения, дифференцируемая и .

2. Квадратичная функция.

Функция вида , где х - переменная, коэффициенты а, b, с - действительные числа, называетсяквадратичной.

«Критические точки функции» - Критические точки. Среди критических точек есть точки экстремума. Необходимое условие экстремума. Ответ: 2. Определение. Но, если f" (х0) = 0, то необязательно, что точка х0 будет точкой экстремума. Точки экстремума (повторение). Критические точки функции Точки экстремумов.

«Координатная плоскость 6 класс» - Математика 6 класс. 1. Х. 1.Найдите и запишите координаты точек A,B, C,D: -6. Координатная плоскость. О. -3. 7. У.

«Функции и их графики» - Непрерывность. Наибольшее и наименьшее значение функции. Понятие обратной функции. Линейная. Логарифмическая. Монотонность. Если k > 0, то образованный угол острый, если k < 0, то угол тупой. В самой точке x = a функция может существовать, а может и не существовать. Х1, х2, х3 – нули функции у = f(x).

«Функции 9 класс» - Допустимые арифметические действия над функциями. [+] – сложение, [-] – вычитание, [*] – умножение, [:] – деление. В таких случаях говорят о графическом задании функции. Образование класса элементарных функций. Степенная функция у=х0,5. Иовлева Максима Николаевича, учащегося 9 класса РМОУ Радужская ООШ.

«Урок Уравнение касательной» - 1. Уточнить понятие касательной к графику функции. Лейбниц рассматривал задачу о проведении касательной к произвольной кривой. АЛГОРИТМ СОСТАВЛЕНИЯ УРАВНЕНИЯ КАСАТЕЛЬНОЙ К ГРАФИКУ ФУНКЦИИ у=f(x). Тема урока: Тест: найти производную функции. Уравнение касательной. Флюксия. 10 класс. Расшифруйте, как исаак ньютон назвал производную функцию.

«Построить график функции» - Дана функция y=3cosx. График функции y=m*sin x. Постройте график функции. Содержание: Дана функция: y=sin (x+?/2). Растяжение графика y=cosx по оси y. Чтобы продолжить нажмите на л. Кнопку мыши. Дана функция y=cosx+1. Смещения графика y=sinx по вертикали. Дана функция y=3sinx. Смещение графика y=cosx по горизонтали.

Всего в теме 25 презентаций