Реферат: Рентгеновское излучение и меры защиты. Защита от вредного рентгеновского излучения Рентгеновское излучение и меры защиты

Узнать стоимость услуги - отправить заявку


Администрация рентгенотерапевтического или рентгенодиагностического кабинета обязана обеспечивать меры по защите сотрудников и населения от воздействия радиационных факторов, в том числе за счет обеспечения кабинета средствами радиационной защиты.

Согласно СанПиН 2.6.1.1192-03, в медицинской сфере используют три вида средств защиты от радиационного излучения:

  • стационарные средства;
  • передвижные (мобильные) средства;
  • средства индивидуальной защиты.

Перечень и количество обязательных средств защиты для рентгеновских кабинетов разного профиля приведен в таблице.

Средства защиты необходимы для предотвращения превышения предельных доз облучения при проведении рентгенодиагностических и рентгенотерапевтических процедур.

Предельные дозы облучения для персонала и пациентов рентген-кабинета

В СанПиН.6.1.1192-03 устанавливаются эквивалентные и эффективные дозы облучения для сотрудников рентгеновских кабинетов и населения. Они приведены в таблице.

Стационарные средства радиационной защиты

В группу стационарных средств защиты рентгеновского кабинета входят потолок, пол, стены, смотровые окна, защитные двери, ставни и другие конструктивные элементы помещения. Их задача - снижать рентгеновского излучение до показателей, не превышающих предельные дозы допустимого излучения для сотрудников медицинского учреждения и пациентов.

Стационарную защиту рентген-кабинетов выпускают из материалов с соответствующими конструктивными и защитными свойствами, отвечающих санитарно-гигиеническим нормативам.

Степень защиты стационарных средств выражается в свинцовых эквивалентах. Свинцовые эквиваленты строительных материалов, которые используются в строительстве рентгеновских кабинетов, представлены в Приложении 9 к СанПиН 2.6.1.1192-03.

Допустимые показатели мощности радиационного излучения за объектами стационарной защиты приводятся в таблице.

Передвижные и индивидуальные средства радиационной защиты

В группу мобильных средств радиационной защиты включают:

  • Большую и малую защитные ширмы для персонала. Большая может иметь от 1 до 3 створок и используется для защиты от излучения всего тела (минимальный показатель свинцового эквивалента - 0,25 мм, Pb). Малая применяется для защиты нижней части тела (минимальный показатель свинцового эквивалента - 0,5 мм, Pb).
  • Малую защитную ширму для пациента. Защищает от рентгеновских лучей нижнюю часть тела (минимальный показатель свинцового эквивалента - 0,5 мм, Pb).
  • Поворотный защитный экран. Защищает отдельные части тела в разных положениях: сидя, стоя, лежа (минимальный показатель свинцового эквивалента - 0,5 мм, Pb).
  • Защитную штору. Защищает от рентгеновских лучей все тело, может использоваться как аналог защитной ширмы (минимальный показатель свинцового эквивалента - 0,25 мм, Pb).

Индивидуальная защита от рентгеновских лучей обеспечивается следующими средствами:

  • Шапочкой, которая защищает от рентгеновских лучей голову (минимальный показатель свинцового эквивалента - 0,25 мм, Pb).
  • Очками для радиационной защиты глаз (минимальный показатель свинцового эквивалента - 0,25 мм, Pb).
  • Воротником, который предназначен для защиты области шеи и щитовидной железы (минимальный показатель свинцового эквивалента для тяжелого воротника - 0,35 мм, Pb, для легкого- 0,25 мм, Pb). Используется самостоятельно или вместе с жилетами и фартуками, у которых есть вырез на шее.
  • Пелериной (накидкойа) для радиационной защиты верхней части груди и плечевого пояса (минимальный показатель свинцового эквивалента - 0,35 мм, Pb).
  • Односторонним фартуком, защищающим переднюю части тела от голеней до шеи (минимальный показатель свинцового эквивалента для легкого фартука - 0,25 мм, Pb, для тяжелого - 0,35 мм, Pb).
  • Двусторонним фартуком для радиационной защиты передней части тела от голеней до шеи и сзади от бедер до лопаток (минимальный показатель свинцового эквивалента для передней части - 0,35 мм, Pb, для остальных частей - 0,25 мм, Pb).
  • Стоматологическим фартуком, с помощью которого защищают от рентгеновских лучей переднюю часть тела при проведении исследований черепа и челюстно-лицевого аппарата (минимальный показатель свинцового эквивалента - 0,25 мм, Pb).
  • Жилетом для защиты от излучения органов грудной клетки от поясницы до области плеч (минимальный показатель свинцового эквивалента для легкого жилета спереди - 0,25 мм, Pb, сзади - 0,15 мм, Pb, для тяжелого - 0,35 мм, Pb спереди и 0,25 мм, Pb сзади).
  • Передником для защиты половых органов и костей таза (минимальный показатель свинцового эквивалента для тяжелого передника - 0,5 мм, Pb, для легкого - 0,35 мм, Pb).
  • Юбкой длиной не менее 35 см для защиты половых органов и костей таза со всех сторон (минимальный показатель свинцового эквивалента для тяжелой юбки - 0,5 мм, Pb, для легкой - 0,35 мм, Pb).
  • Перчатками для защиты от излучения нижней части предплечий, запястий и кистей рук (минимальный показатель свинцового эквивалента для тяжелых перчаток 0,25 мм, Pb, для легких - 0,15 мм, Pb).
  • Наборами защитных пластин разных форм для предупреждения облучения отдельных частей тела (минимальный показатель свинцового эквивалента - 1,0-0,5 мм, Pb).
  • Защитными средствами для половых органов (минимальный показатель свинцового эквивалента - 0,5 мм, Pb).
  • Защитными средствами для проведения рентгеновских исследований детей - пеленки с отверстиями и без, трусики (подгузники) (минимальный показатель свинцового эквивалента - 0,35 мм, Pb).

Как контролируется эффективность радиационной защиты рентген-кабинета?

Санитарные норм и правила требуют от медицинских учреждений контролировать соответствие уровня радиационной защиты стационарных, индивидуальных и передвижных средств установленным нормативам. Все защитные средства должны иметь маркировку, а также санитарно-эпидемиологические заключения, подтверждающие, что они могут применяться при проведении рентгеновских исследований.

Не реже 1 раза в 2 года аккредитованные организации осуществляют проверку средств радиационной защиты.

СК «ОЛИМП» поможет подобрать необходимые средства защиты для рентгеновского кабинета

Санитарно-гигиенические требования и мероприятия по защите от источников ионизирующих излучения на производстве, определяются:

Активностью источников;

Их агрегатному состоянию;

Видом и энергией излучения;

Количеством вещества;

Характером технологического процесса. Для безопасности работ с источниками радиоактивных излучений

необходимую защиту как от внешнего, так и от внутреннего облучения.

Задача при обеспечении радиационной безопасности состоит в том, чтобы не допустить излучения выше предельно. Оно обеспечивается путем применения комплекса организационных и технологических мероприятий, в том числе "защиты временем" и "защиты расстоянием".

Доза гамма излучения:

где: Д - доза у-излучения, Р; и y - ионизационная стала данного изотопа, А - активность, мКи; t - время облучения, ч.; l - расстояние от источника, м.

Из формулы видно, что доза облучения тем меньше, чем меньше время излучения - "защита временем" и чем больше расстояние от источника излучения - "защита расстоянием».

"Защита время" во время работы достигается соответствующей подготовкой и организацией работ, составлением и соблюдением графиков, согласно которым при контакте с источниками излучения минимальный, а производительность труда остается достаточно высокой.

"Защита расстоянием" при работе с радиоактивными веществами незначительной активности предусматривает использование ручных манипуляционных захватов и дистанционных универсальных манипуляторов. Ручные манипуляционные захваты передают движения и усилия рук оператора на некоторое расстояние с соответствующим увеличением этих движений и усилий. Удаленные универсальные манипуляторы позволяют выполнять различные операции по захвату и перемещению предметов, ориентации их под любым углом и др. Они обладают несколькими степенями свободы, ими можно управлять с большого расстояния с помощью рукояток, при этом оператор пальцами испытывает нагрузку и силу от захватов манипулятора. Наблюдение за работой осуществляется с помощью телевизионных систем, системы зеркал и перископов.

При работе с радиоактивными веществами большой активности применяют автоматизированное оборудование, системы дистанционного управления.

Экранирование является наиболее эффективной защитой от радиоактивного облучения, так как позволяет снижать дозу облучения на рабочем месте до предельно уровня. Проектируя защитные экраны, следует определить толщину и материал экрана с учетом вида и энергии излучения.

Защитные экраны от а-излучения, как правило, не применяются, так как оно имеет малую проникающую способность. Слой воздуха в несколько сантиметров или более плотного материала в несколько миллиметров (стекло, картон, фольга, одежда, резиновые перчатки и др.) Обеспечивают достаточно полное поглощение а-излучения.

Поглощение потока β-излучения может быть определено, если толщина защитного экрана может быть примерно определена по формуле:

В защитных экранах для поглощения потока β-излучения применяют алюминий, стекло, плексиглас, свинец с облицовкой материалами с малым атомным номером. Свинец применяется при экранировании β излучений высоких энергий, так как это излучение при прохождении через вещество вызывает вторичное излучение (рентгеновское, в-излучения и нейтронов).

Экраны для защиты от у-излучения выполняют из материалов с большим атомным номером и большой плотностью (свинец, вольфрам). Для стационарных сооружений применяют бетон, баритобетон, чугун, сталь, одновременно являются элементами строительных конструкций.

Если известен уровень излучения на рабочем месте без защиты, то толщину защитных экранов от у-излучений можно определить по формуле:

Защита от нейтронов осложняется тем, что они очень плохо поглощаются веществом. В связи с этим защита от нейтронов заключается в замедлении быстрых нейтронов и последующем поглощении уже замедленных. Защитными материалами от быстрых нейтронов является вода, парафин, графит, бериллий и ин.ш.

Тепловые нейтроны хорошо поглощаются бором, кадмием.

Применяют защитные экраны различных конструкций: стационарные, передвижные, разборные, настольные.

При работе с малыми уровнями излучения используют вытяжные шкафы и боксы, отличающиеся достаточной герметичностью, оборудованные манипуляторами и приточно-вытяжной вентиляцией (7.1).

При транспортировке и хранении радиоактивных веществ используют контейнеры и сейфы, выполненные из стали, свинца, чугуна.

Для устранения попадания внутрь организма светящихся соединений (в настоящее время они применяются в исключительных случаях по шкалам приборов и ручках управления), вызывающие внутреннее облучение, необходимо соблюдать правила личной гигиены (мыть руки теплой водой с мылом перед едой, курением и др.) И исключать возможность их распыления и попадания в воздух производственных помещений.

Работы с радиоактивными изотопами, а также техническое обслуживание приборов и установок, в которых используются изотопы, должны проводиться в специально отведенных помещениях с санитарно-техническим оборудованием и системой вентиляции.

Техническое обслуживание и работа на установках с радиоактивными изотопами должна выполняться работниками не моложе 18 лет, прошедшие медицинский осмотр и специальное обучение безопасным методам работы на данной установке. Эти работники должны находиться под постоянным контролем, для них регламентируется продолжительность рабочего дня, выдается спецодежда, приборы индивидуального дозиметрического контроля

При работе с радиоактивными веществами безопасность зависит в значительной степени от своевременного выявления и измерения уровня излучения.

Измерение осуществляется специальными приборами - радиометрами, использующих различные методы - ионизационный сцинтилляционный, фотографический и химический. Для измерения альфа-, бета-, гамма и рентгеновского излучений и тепловых нейтронов применяются универсальные радиометры типов РКС2-01 и УИМ2-1 и другие.

В процессе работы с радиоактивными веществами большое значение имеет применение средств индивидуальной защиты. Они должны предохранять кожу от загрязнений радиоактивными веществами и предотвращать их попадание внутрь организма.

К средствам индивидуальной защиты относятся: спецодежду, перчатки, респираторы, пневмокостюмы, бахилы. Для непосредственной работы с радиоактивными веществами применяют средства индивидуальной защиты, изготовлены из прочного, хорошо дезактивированного поливинилхлоридного пластика.

Органы дыхания защищают респираторами "Снежок-К", "чтб-1" и "Лепесток". В процессе работы в ремонтной зоне, при осмотре и вскрытии боксов и другого технологического оборудования, загрязненного радиоактивными веществами, применяют пневмошлемы типа "Лиз-4" с индивидуальной подачей в них воздуха.

Рентгеновское излучение

В процессе технической эксплуатации радиоаппаратуры, когда питающее напряжение радиоаппаратуры выше 15 кВ, необходимо обязательно использовать защитные средства для предотвращения облучению операторов и инженерно-технических работников рентгеновским излучением, так как при таких напряжениях рентгеновское излучение рассеивается в окружающем пространстве производственного помещения.

Предельно допустимые дозы рентгеновского облучения предусмотрены санитарными нормами:

Для всего тела человека в течение недели не более 100 мр (миллирентген)

Только рук - 500 мр (80 мр в день).

В смежных помещениях с рентгеновской установкой доза облучения в течение недели не должна превышать 10 мр, а в близлежащих домах мощность дозы не должна превышать дозу нормального фона более чем на 0,01 мр в час.

Как защитные средства от действия мягких рентгеновских лучей применяются экраны из стального листа (1 мм), освинцованного алюминия (3 мм), покрытого оловом стекла (8 мм) или специальной резины (7.1).

Смотровые окна в рентгеновских установках выполняют из плексигласа (30 мм) или покрытого оловом стекла.

С целью предотвращения рассеивания рентгеновского излучения в производственном помещении, устраивают защитные ограждения из различных защитных материалов, например, свинца или бетона.

При кратковременных работах на рентгеновских установках в качестве средств индивидуальной защиты применяются фартуки, перчатки, шапочки, изготовленные из покрытой оловом резины.

Литература: , , , .

Вопросы для самоконтроля

1. В каких отраслях народного хозяйства используются ионизирующие излучения?

2. Какие три стадии хронической лучевой болезни Вы знаете?

3. Как оказывается влияние радиоактивных излучений на организм человека?

4. От каких факторов зависят поражения радиоактивными веществами?

5. Какая физическая суть единицы измерения ионизирующего излучения "зиверт"?

6. В чем физический смысл единицы "рентген"?

7. В каком документе установлены нормы радиационной безопасности?

9. Какие работники не допускаются к работе с источниками ионизирующего излучения?

10. Какие материалы применяют для защитных экранов?

11. Как транспортируют и хранят радиоактивные вещества?

12. Какой принцип защиты "расстоянием" и "время"?

13. Какие методы контроля применяются для измерения радиоактивных излучений?

14. Какие существуют приборы для измерения радиоактивных излучений?

15. Какие следует применять индивидуальные средства защиты от радиоактивных излучений?

Рентгеновское излучение и меры защиты

Коми филиал Кировской государственной медицинской академии

Дисциплина Гигиена

РЕФЕРАТ

Рентгеновское излучение в медицине и меры защиты

Исполнитель: Репин К. В. 304 гр.

Преподаватель: Зеленов В. А.

История открытия рентгеновских лучей. 3

Средства индивидуальной и коллективной защиты в рентгенодиагностике. 6

Дозовые нагрузки на население и персонал при проведении медицинских рентгенологических исследований и основные пути их оптимизации.. 11

г. открытие Беккерелем радиоактивности.

О том впечатлении, которое произвело на мировую общественность открытие Рентгена, свидетельствует следующее высказывание московского физика П. Н. Лебедева, который в мае 1896 г. писал: "Еще никогда ни одно открытие в области физики не встречало такого всеобщего интереса и не было так обстоятельно обсуждаемо в периодической печати, как открытие Рентгеном нового, до той поры неизвестного рода лучей”.

Вильгельм-Конрад Рентген родился 27 марта 1845 г. в Лениепе, маленьком городке в Германии. Будучи уже в одном из старших классов гимназии, он был исключен из нее за то, что отказался выдать товарища, нарисовавшего на доске карикатуру на нелюбимого педагога. Не имея аттестата зрелости, Рентген не мог попасть в университет и поступил сначала в машиностроительное училище, а затем в Цюрихский политехнический институт.

ученую степень доктора наук, а в 1875г., в возрасте тридцати лет, избирается профессором физики и математики в Сельскохозяйственную академию в Хохенхейме. В 1888г. по приглашению старейшего университета Германии в Вюрцбурге Рентген занимает должность ординарного профессора физики и заведующего физическим институтом.

В течение более чем пятидесятилетней научной деятельности Рентген напечатал около 50 работ, посвященных различным разделам физики. Будучи уже ученым с мировым именем, он не оставляет педагогической деятельности и продолжает читать лекции по экспериментальной физике. Только в возрасте 70 лет Рентген оставляет кафедру, продолжая научную деятельность почти до последних дней жизни в должности заведующего Институтом физики и метрологии в Мюнхене.

Характерными чертами Рентгена как человека были его исключительная скромность, сдержанность и замкнутость. Так, в своей лаборатории он до самой смерти запрещал называть открытые им лучи рентгеновыми лучами, а только "Х-лучами" (X-Rays), несмотря на состоявшееся в 1906 г. решение Первого международного съезда по рентгенологии о присвоении им наименования лучей Рентгена.

Требовательный и строго принципиальный в научно-исследовательской работе, он был прямолинеен и принципиален также и в жизни, независимо от того, с кем ему приходилось встречаться. Вместе с тем простота и скромность не покидали его и тогда, когда он стал одним из величайших людей в истории человечества. Исключительным было отношение Рентгена к студенческой молодежи.

мировых ученых. Сам же Рентген находил себе утешение в том, что его открытие в большой мере способствовало смягчению страданий множества раненых, а многим спасло жизнь, что в еще большей степени выявилось в период второй мировой войны.

Общества врачей в Смоленске, от Новороссийского университета в Одессе. Во многих городах его именем были названы улицы. Советское правительство, признавая великие заслуги Рентгена перед наукой и человечеством, воздвигло ему еще при жизни памятник перед зданием Рентгенологического института в Ленинграде; его именем была названа улица, на которой находится этот институт.

Свое открытие Рентген совершил в процессе исследования особого рода лучей, известных под названием катодных, которые возникают при электрическом разряде в трубках с сильно разреженным газом.

Наблюдая в затемненной комнате свечение флуоресцирующего экрана - картона, покрытого платиносинеродистым барием, - вызываемое потоком катодных лучей, выходящих из трубки через окошечко, Рентген вдруг заметил, что при прохождении тока через трубку расположенные поодаль на столе кристаллы платиносинеродистого бария также светятся. Естественно, он предположил, что свечение кристаллов вызывается видимым светом, который испускала трубка. Чтобы проверить это, Рентген обернул трубку черной бумагой; однако свечение кристаллов продолжалось. Чтобы решить другой вопрос - катодные ли лучи вызывают свечение экрана или другие, еще дотоле неизвестные лучи, Рентген отодвинул экран на значительное расстояние; свечение не прекращалось. Так как было известно, что катодные лучи могут проходить в воздухе лишь несколько миллиметров, а в своих опытах Рентген далеко превзошел пределы этой толщины слоя воздуха, то он заключил, что либо полученные им катодные лучи обладают такой проникающей способностью, какую до него никто еще не получал, либо это должны были быть какие-то другие, еще неизвестные лучи.

В процессе исследования Рентген поставил по ходу лучей книгу; свечение экрана стало несколько менее ярким, но все же продолжалось. Пропуская таким же образом лучи сквозь дерево и различные металлы, он заметил, что интенсивность свечения экрана была то более сильная, то ослабевала. Когда же на пути прохождения лучей были поставлены платиновая и свинцовая пластинки, то свечение экрана не наблюдалось совсем. Тогда у него мелькнула мысль поставить на пути лучей свою кисть, и на экране он увидел четкое изображение костей на фоне менее четкого изображения мягких тканей. Чтобы зафиксировать все то, что он видел, Рентген заменил флуоресцирующий картон фотографической пластинкой и получил на ней теневое изображение тех предметов, которые ставились между трубкой и фотопластинкой; в частности, после 20-минутного облучения своей кисти он получил также и ее изображение на фотографической пластинке.

Рентген понял, что перед ним новое, дотоле неизвестное явление природы; оставив все другие занятия, он после двух месяцев работы сумел дать ему столь исчерпывающее объяснение, подтвержденное рядом собранных им фактов, что в течение последующих 17 лет в тысячах работ, посвященных его открытию, не было сказано ничего принципиально нового. Почти все свойства открытых им лучей Рентген сформулировал в трех работах, относящихся к 1895, 1896 и 1897 гг. Он же разработал и технику получения этих новых лучей.

Академик А. Ф. Иоффе, работавший с Рентгеном в течение многих лет, пишет: "с тех пор, как открыты рентгеновы лучи, прошло 50 лет. Но из того, что Рентген опубликовал в первых трех сообщениях, не может быть изменено ни одно слово. Многие тысячи исследований не могли прибавить ни йоты к тому, что сделал сам Рентген в самых элементарных условиях с помощью самых элементарных приборов".

Первое сообщение Рентгена появилось в научной печати в начале января 1896 г. В короткое время оно было переведено на многие иностранные языки, в том числе и на русский. Уже 5 января 1896 г. сведения об открытии Рентгена проникли в общую печать. Весь мир был ошеломлен и взволнован известием об этом открытии. Сообщениями об "Х-лучах" были полны как научные журналы, так и общие журналы и газеты.

В России открытие Рентгена было воспринято с энтузиазмом не только специалистами-учеными, но и всей общественностью. А. М. Горький в 1896 г. писал, что рентгеновы лучи это "величайшее создание человеческого гения".

и германских фирм, ответив им, что его открытие принадлежит всему человечеству.

Не будет преувеличением сказать, что рентгенология в медицине за сравнительно короткий период своего развития сделала столько, сколько не сделала ни одна другая отрасль нашего знания. То, что раньше было доступно лишь одиночкам, блестящим мастерам и знатокам своего дела, благодаря рентгеновым лучам стало доступно рядовым врачам. Во многих разделах медицинского знания наши представления были в корне изменены под влиянием того нового, что дало рентгенологическое исследование, и не только в области распознавания болезней, но и в области их лечения. В минувшую войну рентгенология в немалой степени способствовала быстрейшему восстановлению здоровья раненых бойцов и командиров нашей армии и флота, а также разработке и внедрению в практику таких операций, которые были бы немыслимы без нее.

действия рентгеновых лучей, не могли принимать своевременно предохранительных мер. На почве хронического и длительного раздражения рентгеновыми лучами развивались рентгеновские ожоги кожи и хронические воспаления в ней, переходившие позднее в рак, а также тяжелое малокровие.

Так у нас в стране погибли от профессионального рентгеновского рака врачи С. В. Гольдберг, С. П. Григорьев, Н. Н. Исаченко, Я. М. Розенблат, рентгенолаборант И. И. Ланцевич и др., за рубежом - Альберс-Шенбер г, Леви-Дорн (Германия), Гольцкнехт (Австрия), Бергонье (Франция) и многие другие пионеры рентгенологии.

Сам Рентген счастливо избежал этого потому, что при экспериментах с открытыми им лучами он, для предотвращения почернения фотографических пластинок, помещался в специальном шкафу, обитом цинком, одна сторона которого, обращенная к находившейся вне ящика трубке, была к тому же еще обита свинцом.

Открытие рентгеновых лучей означало также новую эпоху в развитии физики и всего естествознания. Оно оказало глубокое влияние и на последующее развитие техники. По выражению А. В. Луначарского, "открытие Рентгена дало изумительной тонкости ключ, позволяющий проникнуть в тайны природы и строение материи".

Средства индивидуальной и коллективной защиты в рентгенодиагностике.

В настоящее время для защиты от рентгеновского излучения при использовании его в целях медицинской диагностики сформировался комплекс защитных средств, которые можно разделить на следующие группы:

· средства защиты от прямого неиспользуемого излучения;

· средства индивидуальной защиты персонала;

· средства коллективной защиты, которые, в свою очередь, делятся на стационарные и передвижные.

"Санитарными правилами и нормами СанПиН 2. 6. 1. 1192-03", введенными в действие 18 февраля 2003 г., а также ОСПОРБ-99 и НРБ-99. Данные правила распространяются на проектирование, строительство, реконструкцию и эксплуатацию рентгеновских кабинетов независимо от их ведомственной принадлежности и формы собственности, а также на разработку и производство рентгеновского медицинского оборудования и защитных средств.

В РФ разработкой и производством средств радиационной защиты для рентгенодиагностики занято около десятка фирм, преимущественно новых, которые были созданы в период перестройки, что связано, прежде всего, с достаточно простой технологической оснасткой и стабильными потребностями рынка. Традиционные производства защитных материалов, являющихся сырьем для производства рентгенозащитных средств, сконцентрированы на специализированных химических предприятиях. Так, например, Ярославский завод резинотехнических изделий практически является монополистом по производству рентгенозащитной резины целого спектра свинцовых эквивалентов, применяемой в производстве защитных изделий стационарной (отделка стен небольших рентгенокабинетов) и индивидуальной защиты (рентгенозащитная одежда). Листовой свинец, применяемый для изготовления средств коллективной защиты (защита стен, пола, потолка рентгенокабинетов, а также жесткие защитные ширмы и экраны), производится согласно ГОСТам на специализированных заводах по переработке цветных металлов. Концентрат баритовый КБ-3, применяемый при стационарной защите (защитная штукатурка рентгенокабинетов), производится в основном на Салаирском горно-обогатительном комбинате. Производством рентгенозащитного стекла ТФ-5 (защитные смотровые окна), практически монопольно владеет Лыткаринский завод оптического стекла. Изначально все работы по созданию рентгенозащитных средств в нашей стране велись во Всероссийском научно-исследовательском институте медицинской техники. Следует отметить, что практически все современные отечественные производители рентгенозащитных средств и по сей день используют эти разработки. Так, например, в конце восьмидесятых годов ВНИИМТ впервые разработал полную номенклатуру бессвинцовых защитных средств для пациентов и персонала на основе смесей концентратов оксидов редкоземельных элементов, которые в 5 качестве отходов скопились в достаточных количествах на предприятиях Минатома СССР. Эти модели явились основой для разработок) многочисленных новых производителей, таких как "Рентген-Комплект", "Гаммамед", "Фомос", "Гелпик", "Защита Чернобыля".

Основные требования к передвижным средствам радиационной защиты сформулированы в санитарных правилах и нормах СанПиН 2003.

устройств, приходящие в негодность при эксплуатации и подлежащие замене). Стационарная защита кабинетов выполняется на этапе строительно-отделочных работ и не является изделием медицинской техники. Однако в СанПиН предусмотрены нормативы по составу площади применяемых помещений .

Таблица 1. Площадь процедурной с разными рентгеновскими аппаратами

Площадь, кв. м (не менее)
Предусматривается Не предусматривается
использование
каталки
Рентгенодиагностический комплекс (РДК) с полным набором штативов (ПСШ, стол снимков, стойка снимков, штатив снимков) 45 40
34 26
РДК с ПСШ и универсальной стойкой-штативом, рентгенодиагностический аппарат с цифровой обработкой изображения 34 26
РДК с ПСШ, имеющим дистанционное управление 24 16
Аппарат для рентгенодиагностики методом рентгенографии (стол снимков, стойка для снимков, штатив снимков) 16 16
Аппарат для рентгенодиагностики с универсальной стойкой-штативом 24 14
Аппарат для близкодистанционной рентгенотерапии 24 16
Аппарат для дальнедистанционной рентгенотерапии 24 20
6
8

Таблица 2. Состав и площади помещений для рентгеностоматологических исследований

На этапе чистовой отделки рентгенокабинета, исходя из СанПиН, рассчитывается уровень дополнительной защиты стен, потолка и пола процедурной. И производится дополнительная штукатурка расчетной толщины радиационно-защитным баритобетоном. Дверные проемы защищаются с помощью специальных рентгенозащитных дверей требуемого свинцового эквивалента. Смотровое окно между процедурной и пультовой изготавливается из рентгенозащитного стекла марки ТФ-5, в ряде случаев применяются рентгенозащитные ставни, защищающие оконные проемы.

Таким образом, самостоятельными изделиями для защиты от рентгеновского излучения (главным образом, рассеиваемого пациентом и элементами оснащения кабинета) являются носимые и передвижные средства защиты пациентов и персонала, обеспечивающие безопасность при проведении рентгенологических исследований. В таблице приведена номенклатура передвижных и индивидуальных средств защиты и регламентируется их защитная эффективность в диапазоне анодного напряжения 70-150 кВ.

Рентгеновские кабинеты различного назначения должны быть оснащены средствами защиты в соответствии с проводимыми видами рентгеновских процедур (табл. 3) .

Таблица 3. Номенклатура обязательных средств радиационной защиты

Средства радиационной защиты Назначение рентгеновского кабинета защиты
флюорография рентгеноскопия рентгенография маммография денситометрия ангинография
Большая защитная ширма (при отсутствии комнаты управления или др. средств) 1 1 1 1 1 1
Малая защитная ширма 1 1 1
Фартук защитный односторонний 1 1 1 1 1 1
1 1
Воротник защитный 1 1 1 1 1 1
1 1 1
Передник для защиты гонад или юбка защитная 1 1 1 1 1 1
Шапочка защитная 1 1 1
Очки защитные 1 1 1
Перчатки защитные 1 1 1
1 1 1

В зависимости от принятой медицинской технологии допускается корректировка номенклатуры. При рентгенологическом исследовании детей используют защитные средства меньших размеров и расширенный их ассортимент.

К передвижным средствам радиационной защиты относятся:

· большая защитная ширма персонала (одно-, двух-, трехстворчатая) - предназначена для защиты от излучения всего тела человека;

· малая защитная ширма персонала - предназначена для защиты нижней части тела человека;

· малая защитная ширма пациента - предназначена для защиты нижней части тела пациента;

· защитная штора - предназначена для защиты всего тела, может применяться взамен большой защитной ширмы.

· шапочка защитная - предназначена для защиты области головы;

· очки защитные - предназначены для защиты глаз;

· воротник защитный - предназначен для защиты щитовидной железы и области шеи, должен применяться также совместно с фартуками и жилетами, имеющими вырез в области шеи;

· накидка защитная, пелерина - предназначена для защиты плечевого пояса и верхней части грудной клетки;

· фартук защитный двусторонний - предназначен для защиты тела спереди от горла до голеней (на 10 см ниже колен), включая плечи и ключицы, а сзади от лопаток, включая кости таза, ягодицы, и сбоку до бедер (не менее чем на 10 см ниже пояса);

· фартук защитный стоматологический - предназначен для защиты передней части тела, включая гонады, кости таза и щитовидную железу, при дентальных исследованиях или исследовании черепа;

· жилет защитный - предназначен для защиты спереди и сзади органов грудной клетки от плеч до поясницы;

· юбка защитная (тяжелая и легкая) - предназначена для защиты со всех сторон области гонад и костей таза, должна иметь длину не менее 35 см (для взрослых);

· перчатки защитные - предназначены для защиты кистей рук и запястий, нижней половины предплечья;

· защитные пластины (в виде наборов различной формы) - предназначены для защиты отдельных участков тела;

· средства защиты мужских и женских гонад предназначены для защиты половой сферы пациентов.

Для исследования детей предусматриваются наборы защитной одежды для различных возрастных групп.

Эффективность передвижных и индивидуальных средств радиационной защиты персонала и пациентов, выраженная в значении свинцового эквивалента, не должна быть меньше значений, указанных в табл. 4,5.

Таблица 4. Защитная эффективность передвижных средств радиационной защиты

Таблица 5. Защитная эффективность индивидуальных средств радиационной защиты

Наименование
Фартук защитный односторонний тяжелый 0,35
Фартук защитный односторонний легкий 0,25
Фартук защитный двусторонний
- передняя поверхность
- вся остальная поверхность
Фартук защитный стоматологический 0,25
Накидка защитная (пелерина) 0,35
Воротник защитный
- тяжелый
- легкий
Жилет защитный
передняя поверхность

Легкий
остальная поверхность

Легкий

Юбка защитная
Передник для защиты гонад
- тяжелый
- легкий
Шапочка защитная (вся поверхность) 0,25
0,25
Перчатки защитные
- тяжелые
- легкие
Подгузник, пеленка, пеленка с отверстием 0,35

Дозовые нагрузки на население и персонал при проведении медицинских рентгенологических исследований и основные пути их оптимизации

Облучение в медицинских целях по данным НКАДАР ООН занимает второе (после естественного радиационного фона) место по вкладу в облучение населения на Земном шаре. В последние годы радиационные нагрузки от медицинского использования излучения обнаруживают тенденцию к возрастанию, что отражает все большую распространенность и доступность рентгено-радиологических методов диагностики во всем мире. При этом медицинское использование ИИИ вносит самый большой вклад в антропогенное облучение. Усредненные данные облучения, обусловленные медицинским использованием излучений в развитых странах, приблизительно, эквивалентны 50% глобального среднего уровня облучения от естественных источников. Это связано, в основном, с широким применением в этих странах компьютерном томографии.

Диагностическое облучение характеризуется довольно низкими дозами, получаемыми каждым из пациентов (типичные эффективные дозы находятся в диапазоне 1 - 10 мЗв), что в принципе вполне достаточно для получения требуемой клинической информации. Терапевтическое облучение, напротив, сопряжено с гораздо большими дозами, точно подводимыми к объему опухоли (типичные назначаемые дозы в диапазоне 20-60 Гр).

В годовой коллективной дозе облучения населения Российской Федерации на долю медицинского облучения приходится около 30%.

Принятие Федеральных Законов Российской Федерации: "О радиационной безопасности населения" и "Санитарно-эпидемиологическом благополучии населения" принципиально изменило правовые основы организации Госсанэпиднадзора за использованием медицинских источников ионизирующего излучения (ИИИ) и потребовало полного пересмотра санитарных правил и норм, регламентирующих ограничение облучения населения и пациентов от этих источников. Кроме того, возникла необходимость в разработке на Федеральном уровне новых организационных и методических подходов к определению и учету дозовых нагрузок, получаемых населением от медицинских процедур с использованием ИИИ.

в ней 14%, то облучение россиян составляет 3,3 мЗв и 31,2% соответственно.

В Российской Федерации 2/3 медицинского облучения приходится на рентгенодиагностические исследования и почти треть на профилактическую флюорографию, около 4% - на высокоинформативные радионуклидные исследования. Стоматологические исследования добавляют в общую дозу облучения лишь малые доли процента.

доза медицинского облучения населения России составляла 140 тысяч чел. -Зв, а предшествующие годы еще меньше, то в 2001 году она возросла до 150 тысяч чел. -Зв. При этом численность населения страны сократилась. В России на каждого жителя в год проводится в среднем 1,3 рентгенологических исследования в год. Основной вклад в популяционную дозу вносят рентгеноскопические исследования - 34% и профилактические флюорографические исследования с использованием пленочных флюорографов - 39%.

техники; недостаток материальных средств на приобретение средств индивидуальной защиты пациентов, высокочувствительных пленок и современного вспомогательного оборудования; низкая квалификация специалистов.

Выборочная проверка технического состояния парка рентгеновской техники в ряде территорий субъектов Российской Федерации (г. Москва, г. Санкт-Петербург, Брянская, Кировская Тюменская области) показала, что от 20 до 85% действующих аппаратов работают с отклонениями от режимов, указанных в технических условиях. При этом около 15% аппаратов невозможно отрегулировать, дозы облучения пациентов при этом в 2-3, а нередко и более раз выше, чем при их нормальной эксплуатации и они должны быть списаны.

Стратегия снижения дозовых нагрузок на население при проведении рентгенологических процедур должна предусматривать поэтапный переход в рентгенологии на технологии цифровой обработки информации и, прежде всего, при поведении профилактических процедур, доля которых в общем объеме рентгенологических исследований составляет около 33%. Расчеты показывают, что дозовые нагрузки на население при этом снизятся в 1,3 -1,5 раза.

Важным компонентом снижения дозовых нагрузок на население является правильная организация работы фотолабораторного процесса. Основными элементами его являются: подбор типа пленки в зависимости от локализации области обследования и вида рентгенологической процедуры; наличие современных технических средств обработки пленок. Использование при работе в условиях "темной комнаты" оптимального набора современных технологий позволяет за счет резкого снижения дублирования снимков и оптимизации комбинаций "экран-пленка" снизить дозовые нагрузки на пациентов на 15-25%.

Внедрение радиационно-гигиенических паспортов в практику деятельности ЦГСЭН и учреждений здравоохранения при правильных методических подходах к измерению, регистрации, учету и статистической обработке доз уже сегодня позволяет принимать управленческие решения, дающие максимальный эффект снижения индивидуального и коллективного радиационного риска при сохранении высокого качества оказания медицинской помощи населению. На современном этапе детальный анализ динамики дозовых нагрузок является основой в обосновании необходимости пересмотра медицинских технологий, использующих ИИИ, в пользу альтернативных методов исследования с оптимизацией по принципу "польза-вред". Такой подход, на наш взгляд, должен быть положен в основу разработки стандартов лучевой диагностики.

Большая роль в решении вышеуказанной проблемы отводится персоналу отделений лучевой диагностики. Хорошее знание используемой аппаратуры, правильный выбор режимов исследования, точное соблюдение укладок пациентов и методологии его защиты - все это необходимо для качественной диагностики с минимальным облучением, гарантирующим от брака и вынужденных повторных исследований.

Общепризнанно, что именно рентгенология располагает наибольшими резервами оправданного снижения индивидуальных, коллективных и популяционных доз. Эксперты ООН подсчитали, что уменьшение доз медицинского облучения всего на 10%, что вполне реально, по своему эффекту равносильно полной ликвидации всех других искусственных источников радиационного воздействия на население, включая атомную энергетику. Для России этот потенциал значительно выше, в том числе для большинства административных территорий. Доза медицинского облучения населения страны может быть снижена примерно в 2 раза, то есть до уровня 0,5-0,6 мЗв/год, который имеют большинство индустриально развитых стран. В масштабах России это означало бы снижение коллективной дозы на многие десяти тысяч человеко-Зв ежегодно, что равносильно предотвращению каждый год нескольких тысяч смертельных раковых заболеваний, индуцируемых этим облучением.

При проведении рентгенорадиологических процедур облучению подвергается и сам персонал. Многочисленные опубликованные данные показывают, что в настоящее время рентгенолог получает в год дозу профессионального облучения, в среднем, около 1 мЗв в год, что в 20 раз ниже установленного предела дозы и не влечет за собой сколько-нибудь заметного индивидуального риска. Следует отметить, что наибольшему облучению могут подвергаться даже не работники рентгеновских отделений, а врачи так называемых "смежных" профессий: хирурги, анестезиологи, урологи, участвующие в проведении рентгенохирургических операций под рентгеновским контролем.

документах. Поскольку уровни облучения пациентов в медицинской практике не нормируются, соблюдение их радиационной безопасности должно обеспечиваться за счет соблюдения следующих основных требований:

* проведение рентгенорадиологических исследований только по строгим медицинским показаниям с учетом возможности проведения альтернативных исследований;

* осуществление мероприятий по соблюдению действующих норм и правил при проведении исследований;

* проведение комплекса мер по радиационной защите пациентов направленных на получение максимальной диагностической информации при минимальных дозах облучения.

Реализация в полном объеме предложений госсанэпидслужбы России по оптимизации дозовых нагрузок при проведении рентгенодиагностических процедур по итогам ежегодной радиационно-гигиенической паспортизации медицинских учреждений позволит уже в ближайшие 2-3 года снизить эффективную среднюю годовую дозу облучения на одного человека до 0,6 мЗв. При этом суммарная годовая коллективная эффективная доза облучения населения уменьшится почти на 31 000 чел. -Зв, а число вероятных случаев возникновения злокачественных заболеваний (смертельных и не смертельных) снизится за этот период более чем на 2200.

Современные рентгеновские установки - цифровое поколение, они значительно отличаются от своих предков. Отличия прибора не только внешние, значительно выше стало качество фиксируемых на пленке данных. Доза облучения, получаемая при обследовании на новом аппарате, на порядок ниже.

Именно поэтому при назначении рентгеновского обследования выбирайте клинику с цифровой аппаратурой. Существуют и профилактические плановые исследования, которые делают регулярно. С 15-ти лет всем людям нужно ежегодно делать снимок грудной клетки, а женщинам старше 40 лет - маммографию.

О дозе облучения

Рентгеновские исследования нужно проводить только по показаниям . Если врач считает нужным для спасения жизни пациента назначить вторую, третью или шестую процедуру, значит, она необходима. Здесь не существует понятия «предельно допустимая доза».

При ежегодных обследованиях грудной клетки - флюорографии и маммографии человек получает 0,8 мЗв (миллизивертов). Это на рентгеновском аппарате, а эта цифра больше. Рентген в стоматологии - всего 0,1 мЗв. Конечно, даже эти дозы не приносят никакой пользы организму человека. Но если исследование помогает избежать значительно большего зла, лучше его пройти.

Регулярное обследование грудной клетки позволяет избежать вспышек массового заболевания туберкулезом, так как больные вовремя выявляются. Женщинам, переступившим рубеж сорокалетия, стоит проявить дисциплинированность и , чтобы сохранить жизнь и здоровье.

Как защититься от облучения

Есть три распространенных метода защиты от облучения рентгеновскими лучами при обследовании: время, расстояние и экранирование. Таким образом, под лучами нужно находиться как можно меньше времени, как можно дальше или защищаться специальными фартуком, юбкой, воротником, шапочкой с прослойками свинца.

Если вы находитесь в подростковом возрасте гормональной перестройки, нужно защищать от излучения паховую область. Рентгеновское излучение приносит больше всего вреда клеткам крови и половым. Дети должны быть защищены практически целиком, открытой остается только область исследования.

Не стоит и флюорографию в один день. В идеале у каждого пациента должна быть радиационная карточка, куда врач заносит информацию об обследовании и полученную дозу. Нежелательно проводит рентгеновское исследование во время беременности, но при переломах без этого обойтись нельзя.

При производстве, особенно просвечивания, рентгеновские лучи направлены не только на исследуемый объект, но и на рентгенолога, так как он вынужден находиться лицом навстречу лучам. Длительное воздействие рентгеновских лучей оказывает вредное действие на организм.

Для того чтобы избежать попадания рентгеновских лучей на рентгенолога и обслуживающий персонал, существуют специальные защитные приспособления. К ним относятся:

1. Фильтр , который устанавливают перед отверстием в рентгеновской трубке для выхода лучей. Фильтр представляет собой металлическую пластинку из алюминия толщиной 0,5–1 мм. Наличие этого фильтра является строго обязательным для каждой трубки. Назначение этого фильтра - поглощать образующиеся в трубке очень мягкие рентгеновские лучи. Задерживать эти лучи необходимо потому, что они являются наиболее вредными для кожи. Имея слишком малую проникающую способность, мягкие рентгеновские лучи целиком поглощаются кожей. В результате длительного воздействия таких лучей (в течение целого ряда лет) может возникнуть сначала дерматит, а затем и образоваться рак кожи. Алюминиевый фильтр все эти лучи по выходе из трубки поглощает, а все остальные более жесткие - пропускает.

2. Металлический тубус , который одет непосредственно на трубку. Назначение тубуса - ограничивать ширину пучка рентгеновских лучей. Широкое металлическое основание тубуса с наличием свинца поглощает лучи, попадающие на него, и проходят только те, которые попадают в окошко, имеющееся у основания тубуса. Этим самым достигается уменьшение количества лишних лучей, направленных к пациенту.

3. Просвинцованное стекло является наиболее важным приспособлением для защиты от лучей. Оно находится с передней стороны экрана для просвечивания и имеет слегка желтоватый цвет, так как содержит большой процент свинца. Это стекло совершенно прозрачное для видимого света и непрозрачное для рентгеновских лучей.

Рентгеновские лучи, проходя через экран, попадают на просвинцованное стекло и поглощаются им. Таким образом, голова и верхняя часть туловища рентгенолога благодаря этому стеклу надежно защищены от попадания рентгеновских лучей.

Кроме того, на экране для просвечивания имеются металлические козырьки, на месте прикрепления ручек. Эти козырьки защищают руки рентгенолога от лучей, прошедших мимо экрана с просвинцованным стеклом.

4. Просвинцованный фартук ; он предназначен для защиты туловища и ног рентгенолога. Основу фартука составляет резина, в которой содержится определенное количество свинца.

Для защиты рентгенолога или обслуживающего персонала при фиксации животного во время просвечивания, когда руки попадают непосредственно в поле прямых рентгеновских лучей, применяют просвинцованные перчатки . Перчатки изготовлены из просвинцовашюй резины. По внешнему виду они несколько больше и грубее химических перчаток.

Кроме вышеперечисленных средств защиты, имеется еще одно - защитная ширма . Она представляет собой деревянный щиток длиной 1,5 ми высотой 1 м. Для удобства перемещения с места на место щиток этот установлен на небольших колесиках. Ширма с одной стороны обита просвинцованной резиной и служит для защиты нижней части туловища и ног.

В результате пользования этими защитными приспособлениями попадание на рентгенолога прямых лучей и вредное действие сведено до минимума (допустимая доза 0,03 рентгена в день).

Кроме того, при просвечивании образуется небольшое количество рассеянных лучей, образующихся в результате преломления их тканями и клетками просвечиваемого участка.

Как прямые, так и рассеянные лучи обладают способностью ионизировать воздух, в результате чего в течение рабочего дня 5–6 часов при полной нагрузке в рентгеновском кабинете накапливаются озон и целый ряд азотистых соединений. Значительное количество этих газов при ежедневном пребывании в такой атмосфере будут оказывать вредное действие на организм через дыхательные пути, поэтому рентгеновский кабинет после работы необходимо всегда хорошо проветривать.