Кремний и его соединения: формулы. Кремний и его соединения

Кремний (Si) - это неметалл, стоящий на 2 месте после кислорода по запасам и нахождению на Земле(25,8% в Земной коре). В чистом виде он практически не встречается, в основном присутствует на планете в виде соединений.

Характеристика кремния

Физические свойства

Кремний - это хрупкий светло-серый материал с металлическим оттенком или порошкообразный материал коричневого цвета. Строение кристалла кремния однотипно с алмазом, но из-за различий в длине связи между атомами твердость алмаза значительно выше.

Кремний - неметалл, доступный для электромагнитного излучения. Благодаря некоторым качествам, он находится в середине между неметаллами и металлами:

При увеличении температуры до 800 °C становится гибким и пластичным;

При нагревании до 1417 °С плавится;

Начинает кипеть при температуре свыше 2600 °С;

Меняет плотность при высоком давлении;

Обладает свойством намагничиваться против направления внешнего магнитного поля (диамагнит).

Кремний - полупроводник, и примеси, входящие в его сплавы определяют электрические характеристики будущих соединений.

Химические свойства

При разогревании Si вступает в реакцию с кислородом, бромом, йодом, азотом, хлором и различными металлами. При соединении с углеродом получаются твердые сплавы с термо - и химио - стойкостью.

Кремний никак не воздействует с водородом, поэтому все возможные смеси c ним получают другим путем.

При обычных условиях он слабо реагирует со всеми веществами, кроме газообразного фтора. С ним образуется тетрафторид кремния SiF4. Такая неактивность объясняется тем, что на поверхности неметалла из-за реакции с кислородом, водой, ее парами и воздухом ложится пленка диоксида кремния и окутывает его. Поэтому химическое воздействие замедленно и незначительно.

Для удаления этого слоя используют смесь фтороводородной и азотной кислот или водные растворы щелочей. Некоторые специальные жидкости для этого предусматривают добавление хромового ангидрида и иных веществ.

Нахождение кремния в природе

Кремний для Земли столь же важен как углерод для растений и животных. Ее кора почти наполовину состоит из кислорода, а если добавить к этому кремний, получится 80% массы. Эта связь очень важна для перемещения химических элементов.

75% литосферы содержат различные соли кремневых кислот и минералов (песок, кварциты, кремень, слюды, полевые шпаты и т. д.). Во время образования магмы и разных магматических пород Si накапливается в гранитах и в ультраосновных породах (плутонических и вулканических).

В теле человека 1 г кремния. Большинство содержится в костях, сухожилиях, кожном и волосяном покрове, лимфоузлах, аорте и трахее. Он участвует в процессе роста соединительной и костной тканей, а так же поддерживает эластичность сосудов.

Норма употребления в день для взрослого - 5 - 20 мг. Избыток вызывает силикоз.

Применение кремния в промышленности

С каменного века этот неметалл известен человеку и широко используется до сих пор.

Применение:

Он хороший восстановитель, поэтому его используют в металлургии для получения металлов.

В определенных условиях кремний способен проводить электричество, поэтому его применяют в электронике.

Оксид кремния используется в изготовлении стекол и силикатных материалов.

Специальные сплавы используется для производства полупроводниковых приборов.

  • Химия
  • Процессор? Песок? А какие у вас с этим словом ассоциации? А может Кремниевая долина?
    Как бы там ни было, с кремнием мы сталкиваемся каждый день и если вам интересно узнать что такое Si и с чем его едят, прошу под кат.

    Введение

    Будучи студентом одного из московских вузов с специальностью «Наноматериалы», я хотел познакомить тебя, дорогой читатель, с самыми важными химическими элементами нашей планеты. Я долго выбирал с чего начать, углерод или кремний, и все таки решил остановиться именно на Si, потому что сердце любого современного гаджета основано именно на нем, если можно так выразиться конечно. Излагать мысли постараюсь предельно просто и доступно, написав этот материал я рассчитывал, в основном на новичков, но и более продвинутые люди смогут почерпнуть что-то интересное, так же хотелось бы сказать, что статья написана исключительно для расширения кругозора заинтересовавшихся. Итак, приступим.

    Silicium

    Кремний (лат. Silicium), Si, химический элемент IV группы периодической системы Менделеева; атомный номер 14, атомная масса 28,086.
    В природе элемент представлен тремя стабильными изотопами: 28Si (92,27%), 29Si (4,68%) и 30Si (3,05%).
    Плотность (при н.у.) 2,33 г/см³
    Температура плавления 1688 K


    Порошковый Si

    Историческая справка

    Соединения Кремния, широко распространенные на земле, были известны человеку с каменного века. Использование каменных орудий для труда и охоты продолжалось несколько тысячелетий. Применение соединений Кремния, связанное с их переработкой, - изготовление стекла - началось около 3000 лет до н. э. (в Древнем Египте). Раньше других известное соединение Кремния - оксид SiO2 (кремнезем). В 18 веке кремнезем считали простым телом и относили к «землям» (что и отражено в его названии). Сложность состава кремнезема установил И. Я. Берцелиус. Он же впервые, в 1825, получил элементарный Кремний из фтористого кремния SiF4, восстанавливая последний металлическим калием. Новому элементу было дано название «силиций» (от лат. silex - кремень). Русское название ввел Г. И. Гесс в 1834.


    Кремний очень распространен в природе в составе обыкновенного песка

    Распространение Кремния в природе

    По распространенности в земной коре Кремний - второй (после кислорода) элемент, его среднее содержание в литосфере 29,5% (по массе). В земной коре Кремний играет такую же первостепенную роль, как углерод в животном и растительном мире. Для геохимии Кремния важна исключительно прочная связь его с кислородом. Около 12% литосферы составляет кремнезем SiO2 в форме минерала кварца и его разновидностей. 75% литосферы слагают различные силикаты и алюмосиликаты (полевые шпаты, слюды, амфиболы и т. д.). Общее число минералов, содержащих кремнезем, превышает 400.

    Физические свойства Кремния

    Думаю тут останавливаться особо не стоит, все физические свойства имеются в свободном доступе, а я же перечислю самые основные.
    Температура кипения 2600 °С
    Кремний прозрачен для длинноволновых ИК-лучей
    Диэлектрическая проницаемость 11,7
    Твердость Кремния по Моосу 7,0
    Хотелось бы сказать, что кремний хрупкий материал, заметная пластическая деформация начинается при температуре выше 800°С.
    Кремний - полупроводник, именно поэтому он находит большое применение. Электрические свойства кремния очень сильно зависят от примесей.

    Химические свойства Кремния

    Тут много конечно можно сказать, но остановлюсь на самом интересном. В соединениях Si (аналогично углероду) 4-валентен.
    На воздухе кремний благодаря образованию защитной оксидной пленки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400 °С, образуя оксид кремния (IV) SiO2.
    Кремний устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот, легко растворяется в горячих растворах щелочей с выделением водорода.
    Кремний образует 2 группы кислородсодержащих силанов - силоксаны и силоксены. С азотом Кремний реагирует при температуре выше 1000 °С, Важное практическое значение имеет нитрид Si3N4, не окисляющийся на воздухе даже при 1200 °С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, а так же для производства огнеупоров. Высокой твердостью, а также термической и химической стойкостью отличаются соединения Кремния с углеродом (карбид кремния SiC) и с бором (SiB3, SiB6, SiB12).

    Получение Кремния

    Я думаю это самая интересная часть, тут остановимся поподробнее.
    В зависимости от предназначения различают:
    1. Кремний электронного качества (т. н. «электронный кремний») - наиболее качественный кремний с содержанием кремния свыше 99,999 % по весу, удельное электрическое сопротивление кремния электронного качества может находиться в интервале примерно от 0,001 до 150 Ом см, но при этом величина сопротивления должна быть обеспечена исключительно заданной примесью т. е. попадание в кристалл других примесей, хотя бы и обеспечивающих заданное удельное электрическое сопротивление, как правило, недопустимо.
    2. Кремний солнечного качества (т. н. «солнечный кремний») - кремний с содержанием кремния свыше 99,99 % по весу, используемый для производства фотоэлектрических преобразователей (солнечных батарей).


    3. Технический кремний - блоки кремния поликристаллической структуры, полученного методом карботермического восстановления из чистого кварцевого песка; содержит 98 % кремния, основная примесь - углерод, отличается высоким содержанием легирующих элементов - бора, фосфора, алюминия; в основном используется для получения поликристаллического кремния.

    Кремний технической чистоты (95-98%) получают в электрической дуге восстановлением кремнезема SiO2 между графитовыми электродами. В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого кремния. Это требует предварительного синтеза чистейших исходных соединений кремния, из которых кремний извлекают путем восстановления или термического разложения.
    Поликристаллический кремний («поликремний») - наиболее чистая форма промышленно производимого кремния - полуфабрикат, получаемый очисткой технического кремния хлоридными и фторидными методами и используемый для производства моно- и мультикристаллического кремния.
    Традиционно поликристаллический кремний получают из технического кремния путём перевода его в летучие силаны (моносилан, хлорсиланы, фторсиланы) с последующими разделением образующихся силанов, ректификационной очисткой выбранного силана и восстановлением силана до металлического кремния.
    Чистый полупроводниковый кремний получают в двух видах: поликристаллический (восстановлением SiCl4 или SiHCl3 цинком или водородом, термическим разложением SiI4 и SiH4) и монокристаллический (бестигельной зонной плавкой и «вытягиванием» монокристалла из расплавленного кремния - метод Чохральского).

    Тут можно увидеть процесс выращивания кремния, методом Чохральского.

    Метод Чохральского - метод выращивания кристаллов путём вытягивания их вверх от свободной поверхности большого объёма расплава с инициацией начала кристаллизации путём приведения затравочного кристалла (или нескольких кристаллов) заданной структуры и кристаллографической ориентации в контакт со свободной поверхностью расплава.

    Применение Кремния

    Специально легированный кремний широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, тиристоры; солнечные фотоэлементы, используемые в космических кораблях, а так же много всякой всячины).
    Поскольку кремний прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике.
    Кремний имеет разнообразные и все расширяющиеся области применения. В металлургии Si
    используется для удаления растворенного в расплавленных металлах кислорода (раскисления).
    Кремний является составной частью большого числа сплавов железа и цветных металлов.
    Обычно Кремний придает сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании Кремний может вызвать хрупкость.
    Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие кремний.
    Кремнезем перерабатываются стекольной, цементной, керамической, электротехнической и другими отраслями промышленности.
    Сверхчистый кремний преимущественно используется для производства одиночных электронных приборов (например процессор твоего компьютера) и однокристальных микросхем.
    Чистый кремний, отходы сверхчистого кремния, очищенный металлургический кремний в виде кристаллического кремния являются основным сырьевым материалом для солнечной энергетики.
    Монокристаллический кремний - помимо электроники и солнечной энергетики используется для изготовления зеркал газовых лазеров.


    Сверхчистый кремний и продукт его производства

    Кремний в организме

    Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твердых скелетных частей и тканей. Особенно много кремния могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения оксида кремния (IV). В холодных морях и озерах преобладают биогенные илы, обогащенные кремнием, в тропических морях - известковые илы с низким содержанием кремния. Среди наземных растений много кремния накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание оксида кремния (IV) в зольных веществах 0,1-0,5%. В наибольших количествах кремний обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г кремния. При высоком содержании в воздухе пыли оксида кремния (IV) она попадает в легкие человека и вызывает заболевание - силикоз.

    Заключение

    Ну вот и все, если вы дочитали до конца и немного вникли, то вы на шаг ближе к успеху. Надеюсь писал я не зря и пост понравился хоть кому-то. Спасибо за внимание.

    Химический знак кремния Si, атомный вес 28,086, заряд ядра +14. , как и , располагается в главной подгруппе IV группы, в третьем периоде. Это аналог углерода. Электронная конфигурация электронных слоев атома кремния ls 2 2s 2 2p 6 3s 2 3p 2 . Строение внешнего электронного слоя

    Структура внешнего электронного слоя аналогична структуре атома углерода.
    встречается в виде двух аллотропных видоизменений - аморфного и кристаллического.
    Аморфный - порошок буроватого цвета, обладающий несколько большей химической активностью, чем кристаллический. При обычной температуре реагирует с фтором:
    Si + 2F2 = SiF4 при 400° - с кислородом
    Si + O2 = SiO2
    в расплавах - с металлами:
    2Mg + Si = Mg2Si
    Кристаллический кремний - твердое хрупкое вещество с металлическим блеском. Он обладает хорошей тепло- и электропроводностью, легко растворяется в расплавленных металлах, образуя . Сплав кремния с алюминием называется силумином, сплав кремния с железом - ферросилицием. Плотность кремния 2,4. Температура плавления 1415°, температура кипения 2360°. Кристаллический кремний - вещество довольно инертное и в химические реакции вступает с трудом. С кислотами, несмотря на хорошо заметные металлические свойства, кремний не реагирует, а со щелочами вступает в реакцию, образуя соли кремниевой кислоты и :
    Si + 2КОН + Н2О = K2SiO2 + 2H2

    ■ 36. В чем сходство и в чем различие электронных структур атомов кремния и углерода?
    37. Как объяснить с точки зрения электронной структуры атома кремния, почему металлические свойства более характерны для кремния, чем для углерода?
    38. Перечислите химические свойства кремния.

    Кремний в природе. Двуокись кремния

    В природе кремний распространен очень широко. Примерно 25% земной коры приходится на кремний. Значительная часть природного кремния представлена двуокисью кремния SiO2. В очень чистом кристаллическом состоянии двуокись кремния встречается в виде минерала, называемого горным хрусталем. Двуокись кремния и двуокись углерода по химическому составу являются аналогами, однако двуокись углерода - это газ, а двуокись кремния - твердое вещество. В отличие от молекулярной кристаллической решетки СO2 двуокись кремния SiO2 кристаллизуется в виде атомной кристаллической решетки, каждая ячейка которой представляет собой тетраэдр с атомом кремния в центре и атомами кислорода по углам. Это объясняется тем, что атом кремния имеет больший радиус, чем атом углерода, и вокруг него могут разместиться не 2, а 4 кислородных атома. Различием в строении кристаллической решетки объясняется различие свойств этих веществ. На рис. 69 показаны внешний вид кристалла природного кварца, состоящего из чистой двуокиси кремния, и ее структурная формула.

    Рис. 60. Структурная формула двуокиси кремния (а) и кристаллы природного кварца (б)

    Кристаллическая двуокись кремния наиболее часто встречается в виде песка, который имеет белый цвет, если не загрязнен глинистыми примесями желтого цвета. Помимо песка, двуокись кремния часто встречается в виде очень твердого минерала - кремния (гидратированная двуокись кремния). Кристаллическая двуокись кремния, окрашенная в различные примеси, образует драгоценные и полудрагоценные камни - агат, аметист, яшму. Почти чистая двуокись кремния встречается также в виде кварца и кварцита. Свободной двуокиси кремния в земной коре 12%, в составе различных горных пород - около 43%. В общей сложности более 50% земной коры состоит из двуокиси кремния.
    Кремний входит в состав самых различных горных пород и минералов - глины, гранитов, сиенитов, слюд, полевых шпатов и пр.

    Твердая двуокись углерода, не плавясь, возгоняется при -78,5°. Температура плавления двуокиси кремния около 1.713°. Она весьма тугоплавка. Плотность 2,65. Коэффициент расширения двуокиси кремния очень мал. Это имеет очень большое значение при применении посуды из кварцевого стекла. В воде двуокись кремния не растворяется и с ней не реагирует, несмотря на , что это кислотный окисел и ему соответствует кремниевая кислота H2SiO3. Двуокись углерода в воде, как известно, растворима. С кислотами, кроме плавиковой кислоты HF, двуокись кремния не реагирует, со щелочами дает соли.

    Рис. 69. Структурная формула двуокиси кремния (а) и кристаллы природного кварца (б).
    При накаливании двуокиси кремния с углем происходит восстановление кремния, а затем его соединение с углеродом и образование карборунда по уравнению:
    SiO2 + 2С = SiC + СО2. Карборунд обладает высокой твердостью, к кислотам устойчив, а щелочами разрушается.

    ■ 39. По каким свойствам двуокиси кремния можно судить о ее кристаллической решетке?
    40. В виде каких минералов двуокись кремния встречается в природе?
    41. Что такое карборунд?

    Кремниевая кислота. Силикаты

    Кремниевая кислота H2SiO3 является кислотой очень слабой и малоустойчивой. При нагревании она постепенно разлагается на воду и двуокись кремния:
    H2SiO3 = H2O + SiO2

    В воде кремниевая кислота практически нерастворима, но может легко давать .
    Кремниевая кислота образует соли, которые называются силикатами. широко встречаются в природе. Природные - это довольно сложные . Состав их обычно изображается как соединение нескольких окислов. Если в состав природных силикатов входит окись алюминия, они называются алюмосиликатами. Таковы белая глина, (каолин) Al2O3 · 2SiO2 · 2H2O, полевой шпат К2O · Al2O3 · 6SiO2, слюда
    К2O · Al2O3 · 6SiO2 · 2Н2O. Многие природные в чистом виде являются драгоценными камнями, например аквамарин, изумруд и др.
    Из искусственных силикатов следует отметить силикат натрия Na2SiO3 - один из немногих растворимых в воде силикатов. Его называют растворимым стеклом, а раствор - жидким стеклом.

    Силикаты широко применяются в технике. Растворимым стеклом пропитывают ткани и древесину для предохранения их от воспламенения. Жидкое входит в состав огнеупорных замазок для склеивания стекла, фарфора, камня. Силикаты и являются основой в производстве стекла, фарфора, фаянса, цемента, бетона, кирпича и различных керамических изделий. В растворе силикаты легко гидролизуются.

    ■ 42. Что такое ? Чем они отличаются от силикатов?
    43. Что такое жидкое и для каких целей оно применяется?

    Стекло

    Сырьем для производства стекла являются сода Na2CO3, известняк СаСO3 и песок SiO2. Все составные части стеклянной шихты тщательно очищают, смешивают и сплавляют при температуре около 1400°. В процессе сплавления протекают следующие реакции:
    Na2CO3 + SiO2= Na2SiO3 + CO2

    CaCO3 + SiO2 = CaSiO 3+ CO2
    Фактически в состав стекла входят силикаты натрия и кальция, а также избыток SO2, поэтому состав обычного оконного стекла: Na2O · CaO · 6SiO2. Стеклянную шихту нагревают при температуре 1500° до тех пор, пока полностью не удалится двуокись углерода. Затем охлаждают до температуры 1200°, при которой оно становится вязким. Как всякое аморфное вещество, стекло размягчается и затвердевает постепенно, поэтому оно является хорошим пластическим материалом. Вязкую стеклянную массу пропускают через щель, в результате чего образуется стеклянный лист. Горячий стеклянный лист вытягивают валками, доводя до определенных размеров и постепенно охлаждая током воздуха. Затем его обрезают по краям и разрезают на листы определенного формата.

    ■ 44. Приведите уравнения реакций, протекающих при получении стекла, и состав оконного стекла.

    Стекло - вещество аморфное, прозрачное, в воде практически нерастворимо, но если измельчить его в мелкую пыль и смешать с небольшим количеством воды, в полученной смеси с помощью фенолфталеина можно обнаружить щелочь. При длительном хранении щелочей в стеклянной посуде избыток SiO2 в стекле очень медленно реагирует со щелочью и стекло постепенно утрачивает прозрачность.
    Стекло стало известно людям более чем за 3000 лет до нашей эры. В древности получали стекла почти такого же состава, как и в настоящее время, но древние мастера руководствовались лишь собственной интуицией. В 1750 г. М. В. сумел разработать научные основы получения стекла. За 4 года М. В. собрал много рецептов изготовления разных стекол, особенно цветных. На построенной им стекольной фабрике было изготовлено большое количество образцов стекла, которые сохранились до наших дней. В настоящее время используются стекла разного состава, обладающие различными свойствами.

    Кварцевое стекло состоит из почти чистой двуокиси кремния и выплавляется из горного хрусталя. Его очень важной особенностью является , что коэффициент расширения у него незначительный, почти в 15 раз меньше, чем у обычного стекла. Посуду из такого стекла можно раскалить докрасна в пламени горелки и после этого опустить в холодную воду; при этом никаких изменений со стеклом не произойдет. Кварцевое стекло не задерживает ультрафиолетовых лучей, а если окрасить его никелевыми солями в черный цвет, то оно будет задерживать все видимые лучи спектра, но для ультрафиолетовых лучей останется прозрачным.
    На кварцевое стекло не действуют кислоты и , но щелочи его заметно разъедают. Кварцевое стекло более хрупко, чем обычное. Лабораторное стекло содержит около 70% SiО2, 9% Na2О, 5% К2О 8% СаО, 5% Аl2O3, 3% В2O3 (состав стекол приводится не для запоминания).

    В промышленности находят применение стекла иен-ское и пирекс. Иенское стекло содержит около 65% Si02, 15% В2O3, 12% ВаО, 4% ZnO, 4% Аl2O3. Оно прочно, устойчиво к механическим воздействиям, имеет малый коэффициент расширения, устойчиво к щелочам.
    Стекло пирекс содержит 81% SiO2, 12% В2O3, 4% Na2O, 2% Аl2O3, 0,5% As2O3, 0,2% К2O, 0,3% СаО. Оно обладает такими же свойствами, как иенское стекло, но в еще большей степени, особенно после закалки, зато менее устойчиво к щелочам. Из стекла пирекс изготовляют предметы домашнего обихода, подвергающиеся нагреванию, а также детали некоторых промышленных установок, работающие при низких и высоких температурах.

    Разные качества стеклу придают некоторые добавки. Например, примеси окислов ванадия дают стекло, полностью задерживающее ультрафиолетовые лучи.
    Получают также и стекло, окрашенное в различные цвета. Еще М. В. изготовил несколько тысяч образцов цветного стекла разной окраски и оттенков для своих мозаичных картин. В настоящее время методы окраски стекла детально разработаны. Соединения марганца окрашивают стекло в фиолетовый цвет, кобальта - в синий. , распыленное в массе стекла в виде коллоидных частиц, придает ему рубиновую окраску и т. д. Свинцовые соединения придают стеклу блеск, подобный блеску горного хрусталя, поэтому оно называется хрустальным. Такое стекло легко поддается обработке, огранке. Изделия из него очень красиво преломляют свет. При окраске этого стекла различными добавками получается цветное хрустальное стекло.

    Если расплавленное стекло смешать с веществами, которые при разложении образуют большое количество газов, то последние, выделяясь, вспенивают стекло, образуя пеностекло. Такое стекло очень легкое, хорошо обрабатывается, является прекрасным электро- и тепло-изолятором. Оно было впервые получено проф. И. И. Китайгородским.
    Вытягивая из стекла нити, можно получить так называемое стекловолокно. Если пропитать уложенное слоями стекловолокно синтетическими смолами, то получается очень прочный, не поддающийся гниению, прекрасно обрабатывающийся строительный материал, так называемый стеклотекстолит. Интересно, что чем тоньше стекловолокно, тем выше его прочность. Стекловолокно также применяется для изготовления спецодежды.
    Стеклянная вата является ценным материалом, через который можно фильтровать сильные кислоты и щелочи, не фильтрующиеся через бумагу. Кроме того, стеклянная вата является хорошим теплоизолирующим веществом.

    ■ 44. От чего зависят свойства стекол разных видов?

    Керамика

    Из алюмосиликатов особенно важна белая глина - каолин, являющаяся основой для получения фарфора и фаянса. Производство фарфора - чрезвычайно древняя отрасль хозяйства. Родина фарфора - Китай. В России фарфор был получен впервые в XVIIIв. Д, И. Виноградовым.
    Сырьем для получения фарфора и фаянса, помимо каолина, служат песок и . Смесь каолина, песка и воды подвергают тщательному тонкому размолу в шаровых мельницах, затем отфильтровывают избыток воды и хорошо вымешанную пластичную массу направляют на формовку изделий. После формовки изделия подвергают сушке и обжигу в туннельных печах непрерывного действия, где их сначала разогревают, затем обжигают и, наконец, охлаждают. После этого изделия проходят дальнейшую обработку - покрытие глазурью, нанесение рисунка керамическими красками. После каждой стадии изделия обжигают. В результате фарфор получается белым, гладким и блестящим. В тонких слоях он просвечивает. Фаянс порист и не просвечивает.

    Из красной глины формуют кирпичи, черепицу, глиняную посуду, керамические кольца для насадки в поглотительных и промывных башнях разных химических производств, цветочные горшки. Их также обжигают, чтобы они не размягчались водой, стали механически прочными.

    Цемент. Бетон

    Соединения кремния служат основой для получения цемента - вяжущего материала, незаменимого в строительстве. Сырьем для получения цемента являются глина и известняк. Эту смесь обжигают в огромной наклонной трубчатой вращающейся печи, куда непрерывно загружают сырье. После обжига при 1200-1300° из отверстия, расположенного на другом конце печи, непрерывно выходит спекшаяся масса - клинкер. После размола клинкер превращается в . В состав цемента входят главным образом силикаты. Если смешать с водой до образования густой кашицы, а затем оставить на некоторое время на воздухе, то вступит в реакцию с веществами цемента, образуя кристаллогидраты и другие твердые соединения, что приводит к затвердеванию («схватыванию») цемента. Такой уже не переводится в прежнее состояние, поэтому до употребления цемент стараются беречь от воды. Процесс твердения цемента является длительным, и настоящую прочность он приобретает лишь через месяц. Правда, существуют разные сорта цемента. Рассмотренный нами обычный цемент называется силикатным, или портландцементом. Из глинозема, известняка и двуокиси кремния изготовляют быстро твердеющий глиноземистый цемент.

    Если смешать цемент со щебнем или гравием, то получается бетон, являющийся уже самостоятельным строительным материалом. Щебень и гравий называются наполнителями. Бетон обладает высокой прочностью и выдерживает большие нагрузки. Он водостоек, огнестоек. При нагревании почти не теряет прочности, так как теплопроводность его очень мала. Бетон морозостоек, ослабляет радиоактивные излучения, поэтому его используют как строительный материал для гидротехнических сооружений, для защитных оболочек ядерных реакторов. Бетоном обмуровывают котлы. Если смешать цемент с пенообразователем, то образуется пронизанный множеством ячеек пенобетон. Такой бетон является хорошим звукоизолятором и еще меньше, чем обычный бетон, проводит тепло.

    Взгляните на полуметаллический кремний!

    Кремний металл — серый и блестящий полупроводящий металл, который используется для производства стали, солнечных батарей и микрочипов.

    Кремний — второй по численности элемент земной коры (позади только кислорода) и восьмой наиболее распространенный элемент во Вселенной. Фактически, почти 30 процентов веса земной коры можно отнести к кремнию.

    Элемент с атомным номером 14, естественно, встречается в силикатных минералах, включая кремнезем, полевой шпат и слюду, которые являются основными компонентами обычных пород, таких как кварц и песчаник.

    Полуметаллический (или металлоид) кремний обладает некоторыми свойствами как металлов, так и неметаллов.

    Подобно воде, но в отличие от большинства металлов, кремний заключает в жидком состоянии и расширяется по мере его затвердевания. Он имеет относительно высокие температуры плавления и кипения, а при кристаллизации образуется кристаллическая кристаллическая структура алмаза.

    Критически важным для роли кремния в качестве полупроводника и его использования в электронике является атомная структура элемента, которая включает в себя четыре валентных электрона, которые позволяют кремнию легко связываться с другими элементами.

    Шведскому химику Джонсу Якову Берзерлиусу приписывают первый изолирующий кремний в 1823 году. Берцерлий выполнил это путем нагревания металлического калия (который был изолирован только десять лет назад) в тигле вместе с фторосиликатом калия.

    Результатом был аморфный кремний.

    Однако для получения кристаллического кремния потребовалось больше времени. Электролитический образец кристаллического кремния не будет производиться еще три десятилетия.

    Первое коммерческое использование кремния было в форме ферросилиция.

    После модернизации Henry Bessemer сталелитейной промышленности в середине 19 века, был большой интерес к металлургической металлургии и исследованиям в области сталелитейной техники.

    К моменту первого промышленного производства ферросилиция в 1880-х годах значение кремния в улучшении пластичности в чугуне и раскисляющей стали было достаточно хорошо понято.

    Раннее производство ферросилиция производилось в доменных печах путем восстановления кремнийсодержащих руд с древесным углем, что привело к серебристому чугуну, ферросилиция с содержанием кремния до 20 процентов.

    Развитие электродуговых печей в начале 20-го века позволило не только увеличить производство стали, но и увеличить производство ферросилиция.

    В 1903 году группа, специализирующаяся на создании ферросплавов (Compagnie Generate d’Electrochimie), начала свою деятельность в Германии, Франции и Австрии, а в 1907 году был основан первый коммерческий кремниевый завод в США.

    Сталеплавильное производство не было единственным применением для соединений кремния, которые были коммерциализированы до конца XIX века.

    Для производства искусственных алмазов в 1890 году Эдвард Гудрич Ачесон нагревал алюмосиликат с порошкообразным коксом и случайно производимым карбидом кремния (SiC).

    Три года спустя Ачесон запатентовал свой метод производства и основал компанию Carborundum (карборунд, являющийся общим названием для карбида кремния в то время) с целью изготовления и продажи абразивных изделий.

    К началу 20-го века также были реализованы проводящие свойства карбида кремния, и это соединение использовалось в качестве детектора в ранних судовых радиоприемниках. Патент на кремниевые кристаллодетекторы был предоставлен Г. В. Пикарду в 1906 году.

    В 1907 году первый светоизлучающий диод (LED) был создан путем приложения напряжения к кристаллу карбида кремния.

    В 1930-х годах использование кремния выросло с развитием новых химических продуктов, в том числе силанов и силиконов.

    Рост электроники за прошедшее столетие также неразрывно связан с кремнием и его уникальными свойствами.

    В то время как создание первых транзисторов — предшественников современных микрочипов — в 1940-х годах опиралось на германий, незадолго до того, как кремний вытеснил своего металлиста-кузена в качестве более прочного полупроводникового материала подложки.

    Bell Labs и Texas Instruments начали коммерческое производство кремниевых транзисторов в 1954 году.
    Первые кремниевые интегральные схемы были сделаны в 1960-х годах, и к 1970-м годам были разработаны кремниевые процессоры.

    Учитывая, что кремниевая полупроводниковая технология является основой современной электроники и вычислительной техники, неудивительно, что мы ссылаемся на центр деятельности этой отрасли как «Силиконовая долина».

    (Для подробного изучения истории и разработки технологий Silicon Valley и микрочипов я настоятельно рекомендую документальный фильм American Experience под названием «Силиконовая долина»).

    Вскоре после открытия первых транзисторов работа Bell Labs с кремнием привела к второму крупному прорыву в 1954 году: первая кремниевая фотовольтаическая (солнечная) ячейка.

    До этого мысль о том, чтобы использовать энергию солнца для создания силы на земле, считалась невозможной большинством. Но всего через четыре года, в 1958 году, первый спутник с силиконовыми солнечными батареями вращался вокруг Земли.

    К 1970-м годам коммерческие приложения для солнечных технологий выросли до наземных применений, таких как включение освещения на морских нефтяных платформах и железнодорожных переездах.

    За последние два десятилетия использование солнечной энергии выросло по экспоненте. Сегодня на кремниевые фотогальванические технологии приходится около 90 процентов мирового рынка солнечной энергии.

    Производство

    Большинство очищенных кремний каждый год — около 80 процентов — производится как ферросилиций для использования в железе и производстве стали. Ферросилиций может содержать от 15 до 90% кремния в зависимости от требований плавильного завода.

    Сплав железа и кремния производится с использованием погружной электродуговой печи путем редуцирующей плавки. Измельченная в силикагеле руда и источник углерода, такой как коксующийся уголь (металлургический уголь), измельчаются и загружаются в печь вместе с металлоломом.

    При температурах выше 1900 ° C (3450 ° F) углерод реагирует с присутствующим в руде кислородом, образуя газообразный монооксид углерода. Остальное железо и кремний, между тем, затем объединяются, чтобы сделать расплавленный ферросилиций, который можно собрать, постукивая по основанию печи.

    После охлаждения и закалки ферросилиций можно затем отгружать и использовать непосредственно в производстве железа и стали.

    Тот же метод, без включения железа, используется для получения кремния из металлургического сорта, который имеет чистоту более 99 процентов. Металлургический кремний также используется в выплавке стали, а также в производстве алюминиевых литых сплавов и силановых химикатов.

    Металлургический кремний классифицируется по примесным уровням железа, алюминия и кальция, присутствующим в сплаве. Например, 553 металлический кремний содержит менее 0,5 процента каждого железа и алюминия и менее 0,3 процента кальция.

    Ежегодно в мире производится около 8 миллионов метрических тонн ферросилиция, причем на долю Китая приходится около 70 процентов этой суммы. Крупными производителями являются Erdos Metallurgy Group, Ningxia Rongsheng Ferroalloy, Group OM Materials и Elkem.

    Еще 2,6 миллиона метрических тонн металлургического кремния — или около 20 процентов от общего количества рафинированного кремниевого металла — производится ежегодно. Китай, опять же, составляет около 80 процентов этой продукции.

    Удивительным для многих является то, что солнечные и электронные сорта кремния составляют лишь небольшое количество (менее двух процентов) всего производства очищенного кремния.

    Чтобы модернизировать до кремниевого металла (поликремния) солнечного сорта, чистота должна увеличиться до чистого чистого кремния 99,9999% (6N). Это делается одним из трех способов, наиболее распространенным из которых является процесс Siemens.

    Процесс Siemens включает химическое осаждение из паровой фазы летучего газа, известного как трихлорсилан. При температуре 1150 ° C (2102 ° F) трихлорсилан продувается на кремниевом семян высокой чистоты, установленном на конце стержня. По мере того как он проходит, кремний высокой чистоты из газа осаждается на семена.

    Реактор с псевдоожиженным слоем (FBR) и модернизированная кремниевая технология металлургического класса (UMG) также используются для повышения качества металла до поликремния, подходящего для фотоэлектрической промышленности.

    В 2013 году было произведено 230 000 метрических тонн поликремния. Ведущие производители включают GCL Poly, Wacker-Chemie и OCI.

    Наконец, чтобы сделать кремний класса электроники подходящим для полупроводниковой промышленности и некоторыми фотоэлектрическими технологиями, поликремний должен быть превращен в ультрачистый монокристаллический кремний через процесс Чохральского.

    Для этого поликремний расплавляют в тигле при температуре 1425 ° C (2597 ° F) в инертной атмосфере. Затем наплавленный семенной кристалл погружают в расплавленный металл и медленно поворачивают и удаляют, давая время для роста кремния на затравочном материале.

    Получаемый продукт представляет собой стержень (или бул) из монокристаллического кремниевого металла, который может достигать 99,999999999 (11N) процентов чистого. Этот стержень может быть легирован бором или фосфором, если требуется, чтобы при необходимости модифицировать квантовомеханические свойства.

    Монокристаллический стержень может поставляться клиентам как есть, или нарезаться в вафли, а также полироваться или текстурироваться для конкретных пользователей.

    Применение

    В то время как примерно 10 миллионов метрических тонн ферросилиция и кремниевого металла каждый год очищаются, большинство используемых на рынке кремния в действительности представляют собой кремниевые минералы, которые используются для производства всего, начиная с цемента, растворов и керамики, до стекла и полимеры.

    Ферросилиций, как уже отмечалось, является наиболее часто используемой формой металлического кремния. С момента своего первого использования около 150 лет назад ферросилиций оставался важным раскисляющим агентом при производстве углеродистой и нержавеющей стали. Сегодня выплавка стали остается крупнейшим потребителем ферросилиция.

    Тем не менее, ферросилиций имеет ряд преимуществ, помимо сталеплавильного производства. Это предварительный сплав в производстве ферросилиция магния, нодулятор, используемый для производства ковкого чугуна, а также во время процесса Пиджона для очистки магния высокой чистоты.

    Ферросилиций также можно использовать для изготовления тепловых и коррозионностойких сплавов железа, а также кремниевой стали, которая используется при производстве электродвигателей и трансформаторных сердечников.

    Металлургический кремний можно использовать в производстве стали, а также в качестве легирующего агента в алюминиевом литье. Алюминиево-кремниевые (Al-Si) автомобильные детали легкие и прочные, чем компоненты, отлитые из чистого алюминия. Автомобильные детали, такие как блоки двигателя и шины, являются одними из наиболее часто применяемых деталей из литого алюминия.

    Почти половина всего металлургического кремния используется химической промышленностью для производства дымящегося диоксида кремния (загустителя и осушителя), силанов (связующего) и силикона (герметиков, адгезивов и смазочных материалов).

    Поликремний фотовольтаического класса в первую очередь используется при изготовлении поликремниевых солнечных элементов. Для производства одного мегаватта солнечных модулей требуется около пяти тонн поликремния.

    В настоящее время солнечная технология из поликремния составляет более половины солнечной энергии, производимой в глобальном масштабе, в то время как технология моносиликона составляет около 35 процентов. В общей сложности 90 процентов солнечной энергии, используемой людьми, собираются на основе кремниевой технологии.

    Монокристаллический кремний также является критическим полупроводниковым материалом, найденным в современной электронике. В качестве материала подложки, используемого при производстве полевых транзисторов (FET), светодиодов и интегральных схем, кремний можно найти практически во всех компьютерах, мобильных телефонах, планшетах, телевизорах, радио и других современных коммуникационных устройствах.

    По оценкам, более трети всех электронных устройств содержат полупроводниковые технологии на основе кремния.

    Наконец, твердосплавный карбид кремния используется в различных электронных и неэлектронных приложениях, включая синтетические ювелирные изделия, высокотемпературные полупроводники, твердую керамику, режущие инструменты, тормозные диски, абразивы, пуленепробиваемые жилеты и нагревательные элементы.

    Процессор? Песок? А какие у вас с этим словом ассоциации? А может Кремниевая долина?
    Как бы там ни было, с кремнием мы сталкиваемся каждый день и если вам интересно узнать что такое Si и с чем его едят, прошу под кат.

    Введение

    Будучи студентом, одного из московских вузов, с специальностью «Наноматериалы», я хотел познакомить тебя, дорогой читатель, с самыми важными химическими элементами нашей планеты. Я долго выбирал с чего начать, углерод или кремний, и все таки решил остановиться именно на Si, потому что сердце любого современного гаджета основано именно на нем, если можно так выразиться конечно. Излагать мысли постараюсь предельно просто и доступно, написав этот материал я рассчитывал, в основном на новичков, но и более продвинутые люди смогут почерпнуть что-то интересное, так же хотелось бы сказать, что статья написана исключительно для расширения кругозора заинтересовавшихся. И так приступим.

    Silicium

    Кремний (лат. Silicium), Si, химический элемент IV группы периодической системы Менделеева; атомный номер 14, атомная масса 28,086.
    В природе элемент представлен тремя стабильными изотопами: 28Si (92,27%), 29Si (4,68%) и 30Si (3,05%).
    Плотность (при н.у.) 2,33 г/см?
    Температура плавления 1688 K


    Порошковый Si

    Историческая справка

    Соединения Кремния, широко распространенные на земле, были известны человеку с каменного века. Использование каменных орудий для труда и охоты продолжалось несколько тысячелетий. Применение соединений Кремния, связанное с их переработкой, - изготовление стекла - началось около 3000 лет до н. э. (в Древнем Египте). Раньше других известное соединение Кремния - оксид SiO2 (кремнезем). В 18 веке кремнезем считали простым телом и относили к «землям» (что и отражено в его названии). Сложность состава кремнезема установил И. Я. Берцелиус. Он же впервые, в 1825, получил элементарный Кремний из фтористого кремния SiF4, восстанавливая последний металлическим калием. Новому элементу было дано название «силиций» (от лат. silex - кремень). Русское название ввел Г. И. Гесс в 1834.


    Кремний очень распространен в природе в составе обыкновенного песка

    Распространение Кремния в природе

    По распространенности в земной коре Кремний - второй (после кислорода) элемент, его среднее содержание в литосфере 29,5% (по массе). В земной коре Кремний играет такую же первостепенную роль, как углерод в животном и растительном мире. Для геохимии Кремния важна исключительно прочная связь его с кислородом. Около 12% литосферы составляет кремнезем SiO2 в форме минерала кварца и его разновидностей. 75% литосферы слагают различные силикаты и алюмосиликаты (полевые шпаты, слюды, амфиболы и т. д.). Общее число минералов, содержащих кремнезем, превышает 400.

    Физические свойства Кремния

    Думаю тут останавливаться особо не стоит, все физические свойства имеются в свободном доступе, а я же перечислю самые основные.
    Температура кипения 2600 °С
    Кремний прозрачен для длинноволновых ИК-лучей
    Диэлектрическая проницаемость 11,7
    Твердость Кремния по Моосу 7,0
    Хотелось бы сказать, что кремний хрупкий материал, заметная пластическая деформация начинается при температуре выше 800°С.
    Кремний - полупроводник, именно поэтому он находить большое применение. Электрические свойства кремния очень сильно зависят от примесей.

    Химические свойства Кремния

    Тут много конечно можно сказать, но остановлюсь на самом интересном. В соединениях Si (аналогично углероду) 4-валентен.
    На воздухе кремний благодаря образованию защитной оксидной пленки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400 °С, образуя оксид кремния (IV) SiO2.
    Кремний устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот, легко растворяется в горячих растворах щелочей с выделением водорода.
    Кремний образует 2 группы кислородсодержащих силанов - силоксаны и силоксены. С азотом Кремний реагирует при температуре выше 1000 °С, Важное практическое значение имеет нитрид Si3N4, не окисляющийся на воздухе даже при 1200 °С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, а так же для производства огнеупоров. Высокой твердостью, а также термической и химической стойкостью отличаются соединения Кремния с углеродом (карбид кремния SiC) и с бором (SiB3, SiB6, SiB12).

    Получение Кремния

    Я думаю это самая интересная часть, тут остановимся поподробнее.
    В зависимости от предназначения различают:
    1. Кремний электронного качества (т. н. «электронный кремний») - наиболее качественный кремний с содержанием кремния свыше 99,999 % по весу, удельное электрическое сопротивление кремния электронного качества может находиться в интервале примерно от 0,001 до 150 Ом см, но при этом величина сопротивления должна быть обеспечена исключительно заданной примесью т. е. попадание в кристалл других примесей, хотя бы и обеспечивающих заданное удельное электрическое сопротивление, как правило, недопустимо.
    2. Кремний солнечного качества (т. н. «солнечный кремний») - кремний с содержанием кремния свыше 99,99 % по весу, используемый для производства фотоэлектрических преобразователей (солнечных батарей).


    3. Технический кремний - блоки кремния поликристаллической структуры, полученного методом карботермического восстановления из чистого кварцевого песка; содержит 98 % кремния, основная примесь - углерод, отличается высоким содержанием легирующих элементов - бора, фосфора, алюминия; в основном используется для получения поликристаллического кремния.

    Кремний технической чистоты (95-98%) получают в электрической дуге восстановлением кремнезема SiO2 между графитовыми электродами. В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого кремния. Это требует предварительного синтеза чистейших исходных соединений кремния, из которых кремний извлекают путем восстановления или термического разложения.
    Поликристаллический кремний («поликремний») - наиболее чистая форма промышленно производимого кремния - полуфабрикат, получаемый очисткой технического кремния хлоридными и фторидными методами и используемый для производства моно- и мультикристаллического кремния.
    Традиционно поликристаллический кремний получают из технического кремния путём перевода его в летучие силаны (моносилан, хлорсиланы, фторсиланы) с последующими разделением образующихся силанов, ректификационной очисткой выбранного силана и восстановлением силана до металлического кремния.
    Чистый полупроводниковый кремний получают в двух видах: поликристаллический (восстановлением SiCl4 или SiHCl3 цинком или водородом, термическим разложением SiI4 и SiH4) и монокристаллический (бестигельной зонной плавкой и «вытягиванием» монокристалла из расплавленного кремния - метод Чохральского).

    Тут можно увидеть процесс выращивания кремния, методом Чохральского.

    Метод Чохральского - метод выращивания кристаллов путём вытягивания их вверх от свободной поверхности большого объёма расплава с инициацией начала кристаллизации путём приведения затравочного кристалла (или нескольких кристаллов) заданной структуры и кристаллографической ориентации в контакт со свободной поверхностью расплава.

    Применение Кремния

    Специально легированный кремний широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, тиристоры; солнечные фотоэлементы, используемые в космических кораблях, а так же много всякой всячины).
    Поскольку кремний прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике.
    Кремний имеет разнообразные и все расширяющиеся области применения. В металлургии Si
    используется для удаления растворенного в расплавленных металлах кислорода (раскисления).
    Кремний является составной частью большого числа сплавов железа и цветных металлов.
    Обычно Кремний придает сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании Кремний может вызвать хрупкость.
    Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие rремний.
    Кремнезем перерабатываются стекольной, цементной, керамической, электротехнической и других отраслями промышленности.
    Сверхчистый кремний преимущественно используется для производства одиночных электронных приборов (например процессор твоего компьютера) и однокристальных микросхем.
    Чистый кремний, отходы сверхчистого кремния, очищенный металлургический кремний в виде кристаллического кремния являются основным сырьевым материалом для солнечной энергетики.
    Монокристаллический кремний - помимо электроники и солнечной энергетики используется для изготовления зеркал газовых лазеров.



    Сверхчистый кремний и продукт его производства

    Кремний в организме

    Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твердых скелетных частей и тканей. Особенно много кремния могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения оксида кремния (IV). В холодных морях и озерах преобладают биогенные илы, обогащенные кремнием, в тропических морях - известковые илы с низким содержанием кремния. Среди наземных растений много кремния накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание оксида кремния (IV) в зольных веществах 0,1-0,5%. В наибольших количествах кремний обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г кремния. При высоком содержании в воздухе пыли оксида кремния (IV) она попадает в легкие человека и вызывает заболевание - силикоз.

    Заключение

    Ну вот и все, если вы дочитали до конца и немного вникли, то вы на шаг ближе к успеху. Надеюсь писал я не зря и пост понравился хоть кому-то. Спасибо за внимание.