Где производная положительна на графике функции. Производная функции

(рис.1)

Рисунок 1. График производной

Свойства графика производной

  1. На интервалах возрастания производная положительна. Если производная в определённой точке из некоторого интервала имеет положительное значение, то график функции на этом интервале возрастает.
  2. На интервалах убывания производная отрицательна (со знаком минус). Если производная в определённой точке из некоторого интервала имеет отрицательное значение, то график функции на этом интервале убывает.
  3. Производная в точке х равна угловому коэффициенту касательной, проведённой к графику функции в этой же точке.
  4. В точках максимума-минимума функции производная равна нулю. Касательная к графику функции в этой точке параллельна оси ОХ.

Пример 1

По графику (рис.2) производной определить, в какой точке на отрезке [-3; 5] функция максимальна.

Рисунок 2. График производной

Решение: На данном отрезке производная -- отрицательна, а значит, функция убывает слева направо, и наибольшее значение находится с левой стороны в точке -3.

Пример 2

По графику (рис.3) производной определить количество точек максимума на отрезке [-11; 3].

Рисунок 3. График производной

Решение: Точки максимума соответствуют точкам смены знака производной с положительного на отрицательный. На данном промежутке функция два раза меняет знак с плюса на минус -- в точке -10 и в точке -1. Значит количество точек максимума -- две.

Пример 3

По графику (рис.3) производной определить количество точек минимума отрезке [-11; -1].

Решение: Точки минимума соответствуют точкам смены знака производной с отрицательного на положительный. На данном отрезке такой точкой является только -7. Значит, количество точек минимума на заданном отрезке -- одна.

Пример 4

По графику (рис.3) производной определить количество точек экстремума.

Решение: Экстремумом являются точки как минимума, так и максимума. Найдем количество точек, в которых производная меняет знак.

На заданном интервале функция имеет 2 максимума и 2 минимума, итого 4 экстремума. Задание На рисунке изображен график производной функции, определенной на интервале. Решение На заданном отрезке производная функции положительна, поэтому функция на этом отрезке возрастает. Решение Если производная в некоторой точке равна нулю, а в ее окрестности меняет знак, то это точка экстремума.

Вычисление значения производной. Метод двух точек

1. По графику производной исследовать функцию. Функция y=f(x) убывает на промежутках (x1;x2) и (x3;x4). С помощью графика производной y=f ‘(x)также можно сравнивать значения функции y=f(x).

Обозначим эти точки A (x1; y1) и B (x2; y2). Правильно выписывайте координаты - это ключевой момент решения, и любая ошибка здесь приводит к неправильному ответу.

В физическом смысле производная — это скорость изменения любого процесса. Материальная точка движется прямолинейно по закону x(t) = t²-13t+23, где x - расстояние от точки отсчета в метрах, t - время в секундах, измеренное с начала движения.

Касательная к окружности, эллипсу, гиперболе, параболе.

Напомню, что звучит оно так: функция называется возрастающей/убывающей на промежутке, если большему аргументу функции соответствует большее/меньшее значение функции. Но посмотрите, пожалуйста, ваше решение к задаче 7089. Там при указании промежутков возрастания границы не включаются. Учтите, что задан график производной. Как обычно: выколотая точка не лежит на графике, значения в ней не существуют и не рассматриваются. Хорошо подготовленные дети различают понятия «производная» и «вторая производная». Вы путаете: если бы производная обращалась в 0, то в точке функция могла бы иметь минимум или максимум. Отрицательным значениям производной соответствуют интервалы, на которых функция f(x) убывает.

До этого момента мы занимались нахождением уравнений касательных к графикам однозначных функций вида y = f(x) в различных точках.

На рисунке ниже приведены три фактически разных секущих (точки А и В различны), но они совпадают и задаются одним уравнением. Но все же, если отталкиваться от определения, то прямая и ее секущая прямая совпадают. Приступим к нахождению координат точек касания. Просим обратить на него внимание, так как позже мы его используем при вычислении ординат точек касания. Гипербола с центром в точке и вершинами и задается равенством (рисунок ниже слева), а с вершинами и — равенством (рисунок ниже справа). Возникает логичный вопрос, как определить какой из функций принадлежит точка. Для ответа на него подставляем координаты в каждое уравнение и смотрим, какое из равенств обращается в тождество.

Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком, причем так, как показано на нашем рисунке. Похоже на касательную к окружности. Найдем. Мы помним, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно. А как найти производную, если функция задана не графиком, а формулой?

Показывающая связь знака производной с характером монотонности функции.

Пожалуйста, будьте предельно внимательны в следующем. Смотрите, график ЧЕГО вам дан! Функции или ее производной

Если дан график производной , то интересовать нас будут только знаки функции и нули. Никакие «холмики» и «впадины» не интересуют нас в принципе!

Задача 1.

На рисунке изображен график функции , определенной на интервале . Определите количество целых точек, в которых производная функции отрицательна.


Решение:

На рисунке выделены цветом области убывания функции :


В эти области убывания функции попадает 4 целые значения .


Задача 2.

На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.


Решение:

Раз касательная к графику функции параллельна (или совпадает) прямой (или, что тоже самое, ), имеющей угловой коэффициент , равный нулю, то и касательная имеет угловой коэффициент .

Это в свою очередь означает, что касательная параллельна оси , так как угловой коэффициент есть тангенс угла наклона касательной к оси .

Поэтому мы находим на графике точки экстремума (точки максимума и минимума), – именно в них касательные к графику функции будут параллельны оси .


Таких точек – 4.

Задача 3.

На рисунке изображен график производной функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.


Решение:

Раз касательная к графику функции параллельна (или совпадает) прямой , имеющей угловой коэффициент , то и касательная имеет угловой коэффициент .

Это в свою очередь означает, что в точках касания.

Поэтому смотрим, сколько точек на графике имеют ординату , равную .

Как видим, таких точек – четыре.

Задача 4.

На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых производная функции равна 0.


Решение:

Производная равна нулю в точках экстремума. У нас их 4:


Задача 5.

На рисунке изображён график функции и одиннадцать точек на оси абсцисс:. В скольких из этих точек производная функции отрицательна?


Решение:

На промежутках убывания функции её производная принимает отрицательные значения. А убывает функция в точках. Таких точек 4.

Задача 6.

На рисунке изображен график функции , определенной на интервале . Найдите сумму точек экстремума функции .


Решение:

Точки экстремума – это точки максимума (-3, -1, 1) и точки минимума (-2, 0, 3).

Сумма точек экстремума: -3-1+1-2+0+3=-2.

Задача 7.

На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите сумму целых точек, входящих в эти промежутки.


Решение:

На рисунке выделены промежутки, на которых производная функции неотрицательная.

На малом промежутке возрастания целых точек нет, на промежутке возрастания четыре целых значения : , , и .


Их сумма:

Задача 8.

На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите длину наибольшего из них.


Решение:

На рисунке выделены цветом все промежутки, на которых производная положительна, а значит сама функция возрастает на этих промежутках.


Длина наибольшего из них – 6.

Задача 9.

На рисунке изображен график производной функции , определенной на интервале . В какой точке отрезка принимает наибольшее значение.


Решение:

Смотрим как ведет себя график на отрезке , а именно нас интересует только знак производной .


Знак производной на – минус, так как график на этом отрезке ниже оси .

Исследование функции с помощью производной. В этой статье мы с вами разберём некоторые задачи связанные с исследованием графика функции. В таких задачах, даётся график функции y = f (x) и ставятся вопросы, связанные с определением количества точек, в которых производная функции положительна (либо отрицательна), а также другие. Их относят к заданиям на применение производной к исследованию функций.

Решение таких задач, и вообще задач связанных с исследованием, возможно только при полном понимании свойств производной для исследования графиков функций и производной. Поэтому настоятельно рекомендую вам изучить соответствующую теорию. Можете изучить , а также посмотреть (но в нём краткое изложение).

Задачи, где дан график производной мы будем также рассматривать в будущих статьях, не пропустите! Итак, задачи:

На рисунке изображен график функции у = f (х), определенной на интервале (−6; 8). Определите:

1. Количество целых точек, в которых производная функции отрицательна;

2. Количество точек, в которых касательная к графику функции параллельна прямой у = 2;

1. Производная функции отрицательна на интервалах, на которых функция убывает, то есть на интервалах (−6; –3), (0; 4,2), (6,9; 8). В них содержатся целые точки −5, −4, 1, 2, 3, 4, и 7. Получили 7 точек.

2. Прямая y = 2 параллельная оси ох y = 2 только в точках экстремума (в точках, где график меняет своё поведение с возрастания на убывание или наоборот). Таких точек четыре: –3; 0; 4,2; 6,9

Решите самостоятельно :

Определите количество целых точек, в которых производная функции положительна.

На рисунке изображен график функции у = f (х), определенной на интервале (−5; 5). Определите:

2. Количество целых точек, в которых касательная к графику функции параллельна прямой у = 3;

3. Количество точек, в которых производная равна нулю;

1. Из свойств производной функции известно, что она положительна на интервалах, на которых функция возрастает, т. е. на интервалах (1,4; 2,5) и (4,4;5). В них содержится только одна целая точка х = 2.

2. Прямая y = 3 параллельная оси ох . Касательная будет параллельна прямой y = 3 только в точках экстремума (в точках, где график меняет своё поведение с возрастания на убывание или наоборот).

Таких точек четыре: –4,3; 1,4; 2,5; 4,4

3. Производная равна нулю в четырёх точках (в точках экстремума), их мы уже указали.

Решите самостоятельно:

Определите количество целых точек, в которых производная функции f (x) отрицательна.

На рисунке изображен график функции у = f (х), определенной на интервале (−2; 12). Найдите:

1. Количество целых точек, в которых производная функции положительна;

2. Количество целых точек, в которых производная функции отрицательна;

3. Количество целых точек, в которых касательная к графику функции параллельна прямой у = 2;

4. Количество точек, в которых производная равна нулю.

1. Из свойств производной функции известно, что она положительна на интервалах, на которых функция возрастает, т. е. на интервалах (–2; 1), (2;4), (7; 9) и (10;11). В них содержатся целые точки: –1, 0, 3, 8. Всего их четыре.

2. Производная функции отрицательна на интервалах, на которых функция убывает, то есть на интервалах (1; 2), (4; 7), (9; 10), (11;12). В них содержатся целые точки 5 и 6. Получили 2 точки.

3. Прямая y = 2 параллельная оси ох . Касательная будет параллельна прямой y = 2 только в точках экстремума (в точках, где график меняет своё поведение с возрастания на убывание или наоборот). Таких точек семь: 1; 2; 4; 7; 9; 10; 11.

4. Производная равна нулю в семи точках (в точках экстремума), их мы уже указали.