Шестиугольная пирамида. Объем правильной шестиугольной пирамиды

Вычисление объемов пространственных фигур является одной из важных задач стереометрии. В данной статье рассмотрим вопрос определения объема такого полиэдра, как пирамида, а также приведем шестиугольной правильной.

Пирамида шестиугольная

Для начала рассмотрим, что собой представляет фигура, о которой пойдет речь в статье.

Пусть у нас имеется произвольный шестиугольник, стороны которого не обязательно равны друг другу. Также предположим, что мы выбрали в пространстве точку, не находящуюся в плоскости шестиугольника. Соединив все углы последнего с выбранной точкой, мы получим пирамиду. Две разные пирамиды, имеющие шестиугольное основание, показаны на рисунке ниже.

Видно, что помимо шестиугольника фигура состоит из шести треугольников, точка соединения которых называется вершиной. Различие между изображенными пирамидами заключается в том, что высота h правой из них не пересекает шестиугольное основание в его геометрическом центре, а высота левой фигуры попадает точно в этот центр. Благодаря этому критерию левая пирамида получила название прямой, а правая - наклонной.

Поскольку основание левой фигуры на рисунке образовано шестиугольником с равными сторонами и углами, то она называется правильной. Дальше в статье речь пойдет только об этой пирамиде.

Для вычисления объема произвольной пирамиды справедлива следующая формула:

Здесь h - это длина высоты фигуры, S o - площадь ее основания. Воспользуемся этим выражением для определения объема пирамиды шестиугольной правильной.

Поскольку в основании рассматриваемой фигуры лежит равносторонний шестиугольник, то для вычисления его площади можно воспользоваться следующим общим выражением для n-угольника:

S n = n/4 * a 2 * ctg(pi/n)

Здесь n - целое число, равное количеству сторон (углов) многоугольника, a - длина его стороны, функцию котангенса высчитывают, используя соответствующие таблицы.

Применяя выражение для n = 6, получим:

S 6 = 6/4 * a 2 * ctg(pi/6) = √3/2 * a 2

Теперь остается подставить это выражение в общую формулу для объема V:

V 6 = S 6 * h = √3/2 * h * a 2

Таким образом, для вычисления объема рассматриваемой пирамиды необходимо знать два ее линейных параметра: длину стороны основания и высоту фигуры.

Пример решения задачи

Покажем, как можно использовать полученное выражение для V 6 для решения следующей задачи.

Известно, что правильной объем равен 100 см 3 . Необходимо определить сторону основания и высоту фигуры, если известно, что они связаны друг с другом следующим равенством:

Поскольку в формулу для объема входят только a и h, то можно подставить в нее любой из этих параметров, выраженный через другой. Например, подставим a, получаем:

V 6 = √3/2*h*(2*h) 2 =>

h = ∛(V 6 /(2*√3))

Для нахождения значения высоты фигуры необходимо взять корень третей степени из объема, что соответствует размерности длины. Подставляем значение объема V 6 пирамиды из условия задачи, получаем высоту:

h = ∛(100/(2*√3)) ≈ 3,0676 см

Поскольку сторона основания в соответствии с условием задачи в два раза больше найденной величины, то получаем значение для нее:

a = 2*h = 2*3,0676 = 6,1352 см

Объем шестиугольной пирамиды можно найти не только через высоту фигуры и значение стороны ее основания. Достаточно знать два разных линейных параметра пирамиды для его вычисления, например апотему и длину бокового ребра.

Чертеж — первый и очень важный шаг в решении геометрической задачи. Каким должен быть рисунок правильной пирамиды?

Сначала вспомним свойства параллельного проектирования :

— параллельные отрезки фигуры изображаются параллельными отрезками;

— сохраняется отношение длин отрезков параллельных прямых и отрезков одной прямой.

Рисунок правильной треугольной пирамиды

Сначала изображаем основание. Поскольку при параллельном проектировании углы и отношения длин не параллельных отрезков не сохраняются, правильный треугольник в основании пирамиды изображается произвольным треугольником.

Центр правильного треугольника — точка пересечения медиан треугольника. Поскольку медианы в точке пересечения делятся в отношении 2:1, считая от вершины, мысленно соединяем вершину основания с серединой противолежащей стороны, приблизительно делим ее на три части, и на расстоянии 2 частей от вершины ставим точку. Из этой точки вверх проводим перпендикуляр. Это — высота пирамиды. Перпендикуляр рисуем такой длины, чтобы боковое ребро не закрывало изображение высоты.

Рисунок правильной четырехугольной пирамиды

Рисунок правильной четырехугольной пирамиды также начинаем с основания. Поскольку параллельность отрезков сохраняется, а величины углов — нет, то квадрат в основании изображается параллелограммом. Желательно острый угол этого параллелограмма делать поменьше, тогда боковые грани получаются больше. Центр квадрата — точка пересечения его диагоналей. Проводим диагонали, из точки пересечения восстанавливаем перпендикуляр. Этот перпендикуляр — высота пирамиды. Выбираем длину перпендикуляра таким образом, чтобы боковые ребра не сливались между собой.

Рисунок правильной шестиугольной пирамиды

Поскольку при параллельном проектировании параллельность отрезков сохраняется, основание правильной шестиугольной пирамиды — правильный шестиугольник — изображаем шестиугольником, у которого противолежащие стороны параллельны и равны. Центр правильного шестиугольника — точка пересечения его диагоналей. Чтобы не загромождать рисунок, диагонали не проводим, а находим эту точку приблизительно. Из нее восстанавливаем перпендикуляр — высоту пирамиды — так, чтобы боковые ребра не сливались между собой.

Задачи с пирамидами. В данной статье продолжим рассматривать задачи с пирамидами. Их нельзя отнести к какому-то классу или типу заданий и дать общие (алгоритмы) рекомендации для решения. Просто здесь собраны оставшиеся задачи, не рассмотренные ранее.

Перечислю теорию, которую необходимо освежить в памяти перед решением: пирамиды, свойства подобия фигур и тел, свойства правильных пирамид, теорема Пифагора, формула площади треугольника (в она вторая). Рассмотрим задачи:

От треугольной пирамиды, объем которой равен 80, отсечена треугольная пирамида плоскостью, проходящей через вершину пирамиды и среднюю линию основания. Найдите объем отсеченной треугольной пирамиды.

Объём пирамиды равен одной трети произведения площади её основания и высоты:

Данные пирамиды (исходная и отсечённая) имеют общую высоту, поэтому их объемы соотносятся как площади их оснований. Средняя линия от исходного треугольника отсекает треугольник площадь которого в четыре раза меньше, то есть:

Подробнее об этом можно посмотреть здесь.

Это означает, что объём отсечённой пирамиды будет в четыре раза меньше.

Таким образом, он будет равен 20.

Ответ: 20

* аналогичной задачи, использована формула площади треугольника.

Объем треугольной пирамиды равен 15. Плоскость проходит через сторону основания этой пирамиды и пересекает противоположное боковое ребро в точке, делящей его в отношении 1: 2, считая от вершины пирамиды. Найдите больший из объемов пирамид, на которые плоскость разбивает исходную пирамиду.

Постоим пирамиду, обозначим вершины. Отметим на ребре AS точку Е, так чтобы AE была в два раза больше ES (в условии сказано, что ES относится к AE как 1 к 2), и построим указанную плоскость проходящую, через ребро АС и точку Е:

Проанализируем объём какой пирамиды будет больше: EABC или SEBC?

*Объём пирамиды равен одной трети произведения площади её основания и высоты:

Если рассмотреть две полученные пирамиды и в обеих принять за основание грань ЕВС, то становится очевидно, то объём пирамиды АЕВС будет больше объёма пирамиды SEBC. Почему?

Расстояние от точки А до плоскости ЕВС больше чем расстояние от точки S. А это расстояние играет у нас роль высоты.

Итак, найдём объём пирамиды ЕАВС.

Объём исходной пирамиды нам дан, основание у пирамид SАВС и ЕАВС общее. Если мы установим соотношение высот, то без труда сможем определить объём.

Из отношения отрезков ES и AE следует, что АЕ равно две третьих ES. Высоты пирамид SАВС и ЕАВС находятся в такой же зависимости - высота пирамиды ЕАВС будет равна 2/3 высоты пирамиды SАВС.

Таким образом, если

То

Ответ: 10

Объем правильной шестиугольной пирамиды 6. Сторона основания равна 1. Найдите боковое ребро.

В правильной пирамиде вершина проецируется в центр основания. Выполним дополнительные построения:

Найти боковое ребро мы можем из прямоугольного треугольника SOC. Для этого нужно знать SO и ОС.

SO это высота пирамиды, её мы можем вычислить используя формулу объёма:

Вычислим площадь основания. это правильный шестиугольник со стороной равной 1. Площадь правильного шестиугольника равна площади шести равносторонних треугольников с такой же стороной, подробнее об этом (п.6), итак:

Значит

ОС = ВС = 1, так как в правильном шестиугольнике отрезок соединяющий его центр с вершиной равен стороне этого шестиугольника.

Таким образом, по теореме Пифагора:


Ответ: 7

Объ ем тетраэдра равен 200. Найдите объем многогранника, вершинами которого являются середины ребер данного тетраэдра.

Объем указанного многогранника равен разности объемов исходного тетраэдра V 0 и четырех равных тетраэдров, каждый из которых получается отсечением плоскостью, проходящей через середины рёбер, имеющих общую вершину:

Определим, чему равен объём отсеченного тетраэдра.

Отметим, что исходный тетраэдр и «отсечённый» тетраэдр являются подобными телами. Известно, что отношение объёмов подобных тел равно k 3 , где k - коэффициент подобия. В данном случае он равен 2 (так как все линейные размеры исходного тетраэдра в два раза больше соответствующих размеров отсечённого):

Вычислим объём отсечённого тетраэдра:

Таким образом, искомый объём будет равен:

Ответ: 100

Площадь поверхности тетраэдра равна 120. Найдите площадь поверхности многогранника, вершинами которого являются середины ребер данного тетраэдра.

Первый способ:

Искомая поверхность состоит из 8 равносторонних треугольников со стороной, вдвое меньшей ребра исходного тетраэдра. Поверхность исходного тетраэдра состоит из 16-ти таких треугольников (на каждой из 4 граней тетраэдра по 4 треугольника), поэтому искомая площадь равна половине площади поверхности данного тетраэдра и равна 60.

Второй способ:

Так как известна площадь поверхности тетраэдра, то мы можем найти его ребро, затем определить длину ребра многогранника и далее вычислить площадь его поверхности.

Дата: 2015-01-19

Если вам нужна пошаговая инструкция как построить развертку пирамиды, то прошу к нашему уроку. Первым делом оцените, развернута ли ваша пирамида аналогичным образом, как на рисунке 1.

Если у вас она повернута под 90 градусов, то ребро, помеченное на рисунке как "известные реальные величины" в вашем случае можно будет найти на профильной проекции, которую вам необходимо будет построить. В моем же случае этого не требуется, все необходимые для построения величины у нас уже есть. Важно не забыть, что в данном чертеже только ребра SA и SD на фронтальной проекции отображены в натуральную величину. Все остальные проецируются с искажением длины. Кроме того, на виде сверху все стороны шестиугольника так же спроецированы в натуральную величину. Исходя из этого приступим.

1. Для пущей красоты проведем первую линию горизонтально (рисунок 1). Затем, проведем широкую дугу радиусом R=a, т.е. радиусом равным длине бокового ребра пирамиды. Получим точку А. Из нее сделаем с помощью циркуля засечку на дуге, радиусом r=b (длина стороны основания пирамиды). Получим точку B. У нас уже есть первая грань пирамиды!

2. Из точки B сделаем еще одну засечку таким же радиусом - получим точку C и соединив ее с точками B и S получим вторую боковую грань пирамиды (рисунок 2).




3. Повторив данные действия необходимое количество раз (все зависит от того, сколько граней у вашей пирамиды) мы получим такой вот веер (рисунок 3). При правильном построении вы должны получить все точки основания, причем крайние должны повториться.




4. Это требуют не всегда, но все же оно нужно: добавить основание пирамиды к развертке боковой поверхности. Начертить шести-восьми-пятиугольник все дочитавшие до этого места, полагаю, умеют (как начертить пятиугольник подробно рассказано в уроке) Сложность же заключается в том, что фигуру нужно начертить в нужном месте и под нужным углом. Через середину любой грани проведем ось. Из точки пересечения с прямой основания отложим расстояние m, как показано на рисунке 4.


Проведя через эту точку перпендикуляр, мы получим оси будущего шестиугольника. Из полученного центра проводим окружность, как вы поступали при построении вида сверху. Обратите внимание, что окружность должна пройти через две точки боковой грани (в моем случае это F и A)

5. На рисунке 5 показан конечный вид развертки шестиугольной призмы.


На этом построение развертки пирамиды завершено. Стройте ваши развертки, учитесь находить решения, будьте въедливыми и никогда не опускайте рук. Спасибо, что зашли. Не забудьте порекомендовать нас друзьям:) Всего хорошего!


или запишите наш телефон и расскажите о нас своим друзьям - кто-то наверняка ищет способ выполнить чертежи

или создайте у себя на страничке или в блоге заметку про наши уроки - и кто-то еще сможет освоить черчение.