Эндоплазматическая сеть строение. Одномембранные органеллы

Лекция 3. Вакуолярная система

План лекции

  1. Классификация компонентов вакуолярной системы
  2. Эндоплазматическая сеть. История ее изучения, морфоло­гия и функции.
  3. Комплекс Гольджи. История изучения. Морфология и функ­ции.
  4. Лизосомы. История. Внутриклеточное пищеварение.
  5. Система ядерных оболочек. Морфология и функции.
  6. Описание схемы взаимопревращений компонентов вакуоляр­ной системы.

Определение вакуолярной системы

Вакуолярная система - это система органоидов, состоящих из мем­бранных пузырей разной формы, определенным образом связан­ных друг с другом и плазматической мембраной.

Одно из существенных свойств вакуолярной системы - разделение клетки на отсеки (компартменты) - гиалоплазму и содержимое внутри мембранных отсеков.

В состав вакулярной системы входят следующие компоненты: шЭПС, глЭПС, кГ, лизосомы и СЯО.

Эндоплазматическая сеть (ЭПР)

Эндоплазматическая сеть состоит из двух разновидностей - глад­кой и шероховатой, которые отличаются отсутствием или нали­чием на поверхности мембран рибосом. Этот органоид относится к органоидам общего назначения и входит в состав цитоплазмы всех типов клеток эукариот.

Шероховатая ЭПС

Этот органоид был открыт в 1943 г. Claude методом дифференци­ального центрифугирования. При разделении клеточного гомоге­ната на фракции в центрифужных пробирках можно идентифици­ровать 3 основные фракции: надосадочную жидкость, микросо­мную и ядерную фракции.

Именно в состав микросомной фракции, которая содержит множе­ство вакуолей с разнообразным содержимым, входят компоненты вакуолярной системы.

Схема строения ЭПС гепатоцита (рис. Пунина М.Ю.)

1 – шероховатая ЭПС; 2 – гладкая ЭПС; 3 - митохондрия

В 1945 г. Porter при изучении в электронном микроскопе целых клеток куриных фибробластов обнаружил у них в зоне эндо­плазмы мелкие и крупные вакуоли и соединяющие их канальцы. Именно этот компонент клетки и был назван эндоплазматической сетью.

При помощи методов просвечивающей электронной микроскопии было установлено, что ЭПС состоит:

· из системы плоских мембранных мешков (цистерн), соеди­ненных перемычками (анастомозами).

Рис. Эндоплазматическая сеть

1 – трубочки гладкой ЭПС; 2 – цистерны гранулярной (шерохова­той) ЭПС; 3 – наружная ядерная мембрана, покрытая рибосомами; 4 – поровый комплекс; 5 – внутренняя ядерная мембрана (по Кри­стичу с изменениями).

Эти мембранные мешки, как видно на электронномикроскопиче­ских фотографиях концентрическими слоями сосредоточены во­круг ядра. Размер внутреннего отсека составляет около от 20 нм до 1 мк (1 000 нм). Количество элементов шЭПС зависит в клетках от их функции и степени дифференциации. Сосредоточение цистерн шЭПС в клетках в области вокруг ядра называется эргастоплазмой и свидетельствует об участии таких клеток в синтезе экспортного белка.

Рибосомы, прикрепленные к поверхности мембран шЭПС, могут быть единичными, так и в виде розеток (полисом). Глубина про­никновения рибосом внутрь мембран также может отличаться.

Механизм функционирования шероховатой.ЭПС

1. Функция синтеза экспортного белка. Гипотеза Блобеля и Саба­тини (1966 - 1970).

Эта функция осуществляется при участии самих мембран шЭПС и примембранного слоя гиалоплазмы, в котором сосре­доточена система, отвечающая за все этапы трансляции.

Предполагается, что на поверхности мембран шЭПС имеются специальные участки, отвечающие за узнавание концевых фрагментов молекул иРНК. Прикрепление этих молекул пред­шествует началу собственно процесса трансляции. В ходе трансляции, синтезируемые экспортные белки проникают сна­чала через канал в большой субъединице рибосомы, а затем и через мембрану. Внутри мембранного отсека эти белки накап­ливаются. Их дальнейшая судьба связана с процессами дозре­вания.

2. Сегрегация и преобразование экспортных белков.

Сущность процессов дозревания заключается в том, что у от­дельных белковых молекул при помощи специальных фермен­тов отрезается сигнальная последовательность, другие фер­менты присоединяют к ним либо радикалы, либо фрагменты углеводных и липидных молекул, в случае формирования сложных по химическому составу секретов.

В случае, если это белки мембран, то в зависимости от их по­ложения в билипидном слое (снаружи, внутри или на поверх­ности молекулы белков перемещаются из большой субъеди­ницы рибосомы на ту или иную поверхность мембраны или пронизывают ее насквозь (интегральные белки).

Схема молекулярной оргаизации шероховатой ЭПС и ее роли в процессах синтеза и вторичных преобразований белковых мо­лекул (рис. Пунина М.Ю.)

1 – мембрана; 2 – полуинтегральные белки и гликопротеиды; 3 – олигосахариды и другие углеводные компоненты на внут­ренней поверхности мембран и в полости цистерн; 4 – иРНК; 5 – гипотетический рецептор в мембране для иРНК; 6, 7 – субъе­диницы рибосом; (6 – малая, 7 – большая); 8 – неиндетифици­рованные интегральные белки мембраны, обеспечивающие прохождение синтезируемых белков через мембрану; 9 – гипо­тетические интегральные белки, обеспечивающие крепление к мембране больших субъединиц рибосом; 10 – синтезируемая белковая молекула; 11 – 13 – варианты синтеза интегральных (13), полуинтегральных белков наружного (11), и внутреннего (12) слоев мембраны; 14 – синтез белков гиалоплазмы на при­крепленной рибосоме; 15 – 17 – последовательные стадии син­теза, прохождения через мембрану и вторичных изменений экспортных белков.

В левом верхнем углу - внешний вид шероховатой ЭПС в элек­тронном микроскопе; в правом углу – типичные отношения между полисомой и мембраной шероховатой ЭПС при синтезе экспортных и полуинтегральных белков; в центре – цитоплаз­матический пул субъединиц рибосом.

Стрелки показывают направление перемещения субъединиц рибосом и синтезированных белковых молекул.

3. Внутримембранное хранение веществ.

Некоторые секреты хранятся во внутри мембранном простран­стве определенное время, по прошествии которого они упако­вываются в мелкие мембранные пузырьки, которые переносят секрет от шЭПС в зону формирования комплекса Гольджи. Так при изучении образования белковых молекул антител было установлено, что сама молекула строится за 90 сек, но снаружи клетки она оказывается только через 45 минут. То есть при секреции установлены следующие этапы: синтез белка, сегре­гация (разъединение), внутри клеточный транспорт, концен­трирование, внутриклеточное хранение, освобождение из клетки.

4. Участие в обновлении мембранных компонентов (место образо­вания новой мембраны). Гипотеза Лодиша и Ротмена (1977).

Внутренняя часть билипидного слоя мембранных цистерн шЭПС – место встраивания вновь синтезированных молекул липидов. После нарастания поверхности внутренней части би­липидного слоя избыток липидных молекул перескакивает в наружный слой билипидной поверхности из-за подвижности липидных молекул по вертикали (свойство флип-флоп).

Гладкая эндоплазматическая сеть

В отличие от шЭПС эта разновидность сети имеет два существен­ных отличия:

· мембранные пузыри имеют форму сложной системы трубочек;

· поверхность мембраны гладкая, лишена рибосом.

Схема расположения трубочек гладкой ЭПС (саркоплазматиче­ского ретикулюма) мышц.

М – митохондрии. (по Fawcett, McNutt, 1969)

Этот органоид также относится к органоидам общего назначения, но в некоторых клетках составляет основную массу цитоплазмы таких клеток. Это связано с тем, что эти клетки участвуют в обра­зовании не мембранных липидов. Примером таких клеток служат клетки коры надпочечников, специализирующихся на выработке стероидных гормонов. В цитоплазме этих клеток наблюдается сплошная масса трубочек гладкой ЭПС. Гладкая ЭПС обычно за­нимает в клетке строго определенное место: в клетках кишечника – в апикальной зоне, в клетках печени в зоне отложения гликогена, в интерстециальных клетках семенника она равномерно распреде­лена по всему объему цитоплазмы.

Происхождение гладкой ЭПС – вторичное. Этот органоид образу­ется из шЭПС в результате утери последним рибосом, либо за счет роста шЭПС в виде трубочек, лишенных рибосом..

Механизм функционирования гладкой ЭПС

1. Участие в синтезе не мембранных липидов.

Эта функция связана с секрецией этих веществ, например сте­роидных гормонов.

2. Детоксикация (внутри мембранное хранение токсических отхо­дов метаболизма).

Эта функция связана со способностью трубочек гладкой ЭПС клеток печени накапливать во внутри мембранном простран­стве ядовитых продуктов метаболизма, например некоторых лекарств (явление известное для барбитуратов).

3. Накопление двухвалентных катионов.

Эта функция характерна для L-каналов мышечных волокон. Внутри этих каналов накапливаются двухвалентные ионы Ca +2 ,которые участвую в процессах образования кальциевых мостиков между молекулами актина и миозина в процессе мы­шечного сокращения.


Эндоплазматическая сеть, или эндоплазматический ретикулум, представляет собой систему плоских мембранных цистерн и мембранных трубочек. Мембранные цистерны и трубочки соединяются между собой и образуют мембранную структуру с общим содержимым. Это позволяет изолировать определенные участки цитоплазмы от основной ниалоплазмы и реализовать в них некоторые специфические клеточные функции. В результате происходит функциональная дифференцировка различных зон цитоплазмы. Строение мембран ЭПС соответствует жидкостно-мозаичной модели. Морфологически различают 2 вида ЭПС: гладкую (агранулярную) и шероховатую (гранулярную). Гладкая ЭПС представлена системой мембранных трубочек. Шероховатая ЭПС является системой мембранных цистерн. На наружной стороне мембран шероховатой ЭПС находятся рибосомы. Оба вида ЭПС находятся в структурной зависимости – мембраны одного вида ЭПС могут переходить в мембраны другого вида.

Функции эндоплазматической сети:

1.Гранулярная ЭПС участвует в синтезе белков, в каналах образуются сложные молекулы белков.

2.Гладкая ЭПС участвует в синтезе липидов, углеводов.

3.Транспорт органических веществ в клетку (по каналам ЭПС).

4.Делит клетку на секции, – в которых могут одновременно идти разные химические реакции и физиологические процессы.

Гладкая ЭПС является полифункциональной. В ее мембране имеются белки-0ферменты, которые катализируют реакции синтеза мембранных липидов. В гладкой ЭПС синтезируются и некоторые не мембранные липиды (стероидные гормоны). В состав мембраны этого типа ЭПС включены переносчики Са2+. Они транспортируют кальций по градиенту концентрации (пассивный транспорт). При пассивном транспорте происходит синтез АТФ. С их помощью в гладкой ЭПС регулируется концентрация Са2+ в гиалоплазме. Этот параметр важен для регуляции работы микротрубочек и микрофибрилл. В мышечных клетках гладкая ЭПС регулирует сокращение мускулатуры. В ЭПС происходит детоксикация многих вредных для клетке веществ (лекарственные препараты). Гладкая ЭПС может образовывать мембранные пузырьки, или микротельца. Такие пузырьки осуществляют специфические окислительные реакции изолированно от ЭПС.

Главной функцией шероховатой ЭПС является синтез белков. Это определяется наличием на мембранах рибосом. В мембране шероховатой ЭПС имеются специальные белки рибофорины. Рибосомы взаимодействуют с рибофоринами и фиксируются на мембране в определенной ориентации. Все белки синтезирующиеся в ЭПС имеют концевой сигнальный фрагмент. На рибосомах шероховатой ЭПС идет синтез белков.

В цистернах шероховатой ЭПС происходит посттрансляционная модификация белков.

Цепни.

Класс ленточные черви (Cestoidea)

Болезни: свин ц – тениоз, быч цеп – тениаринхоз, эхин – эхинококкоз, карлик цепень – гименолипедоз

Широкий лентец .Diphyllobothrium latum

Заболевание: дифиллоботриоз.

Особенности: сам крупн. 10-20 м, на скоклексы 2 ботрии – присасыват щели, полов клоака на вентр стороне членика. Яйца овальные, желто-коричневой окраски.

Окончательные хозяева: человек и животные, которые питаются рыбой.Промежуточные хозяева: Пресноводные рачки (циклопы).

Пресноводные рыбы (хищные рыбы – резервуар)

Жизненный цикл:яйца-вода-корацидий-заглат циклопом-онкосфера-проник ч/з стенку киш-полость тела-процеркоид. Циклоп с финнами-преснов рыба-процеркоид проник в мышцы-плероцеркоид. Рыба с плероцеркоидом-киш-к осн хоз-марита.

Продолжительность жизни – до 25 лет. нвазионная форма: финна типа плероцеркоид.

Способ заражения: per os.Путь заражения: алиментарный (через мясо пресноводной рыбы, свежепросоленную икру).

Патогенная форма: половозрелая особь.Локализация: тонкая кишка.

Патогенное действие:Токсико-аллергическое. Продукты метаболизма половозрелой особи отравляют организм человека, сенсибилизируют его и вызывают аллергию.

В эндоплазматической сети вырабатывается, процессируется и транспортируется множество веществ, которые используются клеткой или выделяются из неё. Различают гранулярную (зернистую, шероховатую) и гладкую эндоплазматическую сеть (ретикулум). Цистерны гранулярной и гладкой эндоплазматической сети не сообщаются. Клетки, специализированные на выработку белка, имеют более развитую гранулярную эндоплазматическую сеть. Клетки, продуцирующие липиды и стероидные гормоны, содержат выраженную гладкую эндоплазматическую сеть.

Функции эндоплазматической сети: ❖ поставка липидов другим органеллам (гладкая); ❖ гомеостаз Ca2+ (гладкая); ❖ биогенез органелл (гранулярная); ❖ формирование пространственной (трёхмерной) структуры (укладки) белков (гранулярная); ❖ посттрансляционный контроль качества белка (гранулярная).

Гранулярная эндоплазматическая сеть

Гранулярная эндоплазматическая сеть - система плоских мембранных цистерн с находящимися на их наружной поверхности рибосомами (см. рис. 2-22). В шероховатой эндоплазматической сети происходит синтез белков для плазматической мембраны, лизосом, пероксисом, а также синтез белков на экспорт, т.е. предназначенных для секреции. Мембраны гранулярной эндоплазматической сети связаны с наружной мембраной оболочки ядра и перинуклеарной цистерной. Гранулярная эндоплазматическая сеть располагается в непосредственной близости от ядра и комплекса Гольджи. Она участвует в синтезе и процессинге белков, преимущественно предназначенных для выделения из клетки. Рибосомы при помощи рибофоринов связаны с наружной (обращённой в цитозоль) поверхностью сети. Их количество (например, в гепатоците) достигает 13 млн. Собранные на рибосомах белки поступают внутрь цистерны для последующего процессинга. Концентрация белка здесь может превышать 100 мг/мл. Здесь же происходит укладка белков и формирование правильной трёхмерной структуры. В цистернах сети к белкам присоединяются углеводы с образованием гликопротеинов, а также формируются белковые комплексы с металлами. Из эндоплазматической сети многие белки поступают во все компартменты клетки для выполнения своих функций или направляются в комплекс Гольджи для последующей модификации. Резидентные белки и шапероны. Наряду с покидающими сеть белками, имеются резидентные белки, которые постоянно присутствуют в просвете цистерн и нужны для поддержания функции сети, а именно для узнавания образованных здесь белков, их процессирования и удержания в течение необходимого времени до отправления их по нужному адресу. Примером резидентных белков может служить белок BiP - шаперон иммуноглобулин-связывающего белка, принадлежащий семейству белков теплового шока Hsp70. В контроле качества белка участвуют шапероны. В белковом матриксе эндоплазматической сети шапероны предотвращают агрегацию белков и делают возможной эффективную их укладку.

Гладкая эндоплазматическая сеть

Гладкий ретикулум (гладкий ЭР) - система анастомозирующих мембранных каналов, пузырьков и трубочек - не содержит рибофоринов и по этой причине не связан с рибосомами.

Функции гладкой эндоплазматической сети многообразны: синтез липидов и стероидных гормонов, детоксикация и депонирование ионов кальция.

Детоксикация. Одной из наиболее важной функцией гладкого ЭР является детоксикация (при помощи оксидаз гепатоцитов) как продуктов клеточного метаболизма, так и поступающих извне веществ, в том числе этанола и барбитуратов. С участием гладкого ЭР вещества конвертируются в водорастворимые соединения, что способствует их выведению из организма. Для эффективной детоксикации гладкий ЭР в течение нескольких дней может удвоить общую площадь своей поверхности.

Синтез стероидных гормонов. В стероидпродуцирующих клетках (кора надпочечников, половые железы) гладкий ЭР служит для метаболизма стероидов и образования (при участии митохондрий) конечных форм стероидных гормонов.

Депо кальция. Цистерны гладкой эндоплазматической сети многих клеток специализированы для накопления в них Ca2+ путём постоянного откачивания Ca2+ из цитоплазмы, где нормально содержание Ca2+ не превышает 10-7 М. Подобные депо существуют в скелетной и сердечной мышцах, нейронах, хромаффинных клетках, яйцеклетке, эндокринных клетках и т.д. Различные сигналы (например, гормоны, нейромедиаторы, факторы роста) влияют на функции клеток путём изменения концентрации в цитозоле внутриклеточного посредника - Ca2+. Например, условие сокращения мышечных элементов - резкое повышение концентрации Ca2+ в цитозоле. Для этого необходимо постоянно откачивать ионы кальция из цитозоля и накапливать их в специальных депо, образованных Ca2+-запасающими цистернами гладкой эндоплазматической сети. Внутри цистерн находятся Ca2+-связывающие белки. В мембрану цистерн - депо Ca2+ встроены Ca2+-насосы (Ca2+-АТФаза), постоянно закачивающие Ca2+ внутрь цистерн, и Ca2+-каналы, через которые происходит выброс Ca2+ из депо при поступлении сигнала.

Строение эндоплазматической сети

Определение 1

Эндоплазматическая сеть (ЭПС, эндоплазматический ретикулум) – сложная ультрамикроскопическая, очень разветвлённая, взаимосвязанная система мембран, которая более или менее равномерно пронизывает массу цитоплазмы всех эукариотических клеток.

ЭПС – мембранная органелла, состоящая из плоских мембранных мешочков – цистерн, каналов и трубочек. Благодаря такому строению эндоплазматическая сеть значительно увеличивает площадь внутренней поверхности клетки и делит клетку на секции. Внутри она заполнена матриксом (умеренно плотный рыхлый материал (продукт синтеза)). Содержание различных химических веществ в секциях неодинаково, потому в клетке как одновременно, так и в определённой последовательности могут происходить различные химические реакции в незначительном объёме клетки. Эндоплазматическая сеть открывается в перинуклеарное пространство (полость между двумя мембранами кариолемы).

Мембрана эндоплазматической сети состоит из белков и липидов (в основном фосфолипидов), а так же ферментов: аденозинтрифосфатазы и ферментов синтеза мембранных липидов.

Различают два вида эндоплазматической сети:

  • Гладкую (агранулярную, аЭС), представленную трубочками, которые анастамозируют между собой и не имеют на поверхности рибосом;
  • Шероховатую (гранулярную, грЭС), состоящую так же из соединённых между собой цистерн, но они покрыты рибосомами.

Замечание 1

Иногда выделяют ещё переходящую, или транзиторную (тЭС) эндоплазматическую сеть, которая находится в участке перехода одной разновидности ЭС в другую.

Гранулярная ЭС свойственна всем клеткам (кроме сперматозоидов), но степень её развития разная и зависит от специализации клетки.

Сильно развита грЭС эпителиальных железистых клеток (поджелудочной железы, вырабатывающих пищеварительные ферменты, печени – синтезирующих альбумины сыворотки крови), фибробластов (клеток соединительной ткани, продуцирующих белок коллаген), плазматических клеток (продуцирование иммуноглобулинов).

Агранулярная ЭС преобладает в клетках надпочечников (синтез стероидных гормонов), в клетках мышц (обмен кальция), в клетках фундальных желез желудка (выделение ионов хлора).

Другим видом мембран ЭПС являются разветвлённые мембранные трубочки, содержащие внутри большое количество специфических ферментов, и везикулы – маленькие, окружённые мембраной пузырьки, в основном находящиеся рядом с трубочками и цистернами. Они обеспечивают перенесение тех веществ, которые синтезируются.

Функции ЭПС

Эндоплазматическая сеть – это аппарат синтеза и, частично, транспорта веществ цитоплазмы, благодаря которому клетка выполняет сложные функции.

Замечание 2

Функции обоих типов ЭПС связаны с синтезом и транспортом веществ. Эндоплазматическая сеть является универсальной транспортной системой.

Гладкая и шероховатая эндоплазматические сети своими мембранами и содержимым (матриксом) выполняют общие функции:

  • разделительную (структурирующую), благодаря чему цитоплазма упорядоченно распределяется и не смешивается, а так же предотвращает попадание в органеллу случайных веществ;
  • трансмембранное транспорт, благодаря которому осуществляется перенесение сквозь стенку мембраны необходимых веществ;
  • синтез липидов мембраны с участием ферментов, содержащихся в самой мембране и обеспечивающих репродукцию эндоплазматической сети;
  • благодаря разнице потенциалов, возникающая между двумя поверхностями мембран ЭС возможно обеспечение проведения импульсов возбуждения.

Кроме того, каждой из разновидностей сети свойственны свои специфические функции.

Функции гладкой (агранулярной) эндоплазматической сети

Агранулярная эндоплазматическая сеть, кроме названных функций, общих для обоих видов ЭС, выполняет ещё и свойственные только для неё функции:

  • депо кальция . Во многих клетках (в скелетных мышцах, в сердце, яйцеклетках, нейронах) существуют механизмы, способные изменять концентрацию ионов кальция. Поперечнополосатая мышечная ткань содержит специализированную эндоплазматическую сеть, называемую саркоплазматическим ретикулумом. Это резервуар кальций-ионов, а мембраны этой сети содержат мощные кальциевые помпы, способные выбрасывать в цитоплазму большое количество кальция или транспортировать его в полости каналов сети за сотые доли секунды;
  • синтез липидов , веществ типа холестерина и стероидных гормонов. Стероидные гормоны синтезируются в основном в эндокринных клетках половых желез и надпочечников, в клетках почек и печени. Клетки кишечника синтезируют липиды, которые выводятся в лимфу, а потом в кровь;
  • детоксикационная функция – обезвреживание єкзогенных и эндогенных токсинов;

    Пример 1

    В почечных клетках (гепатоцитах) содержатся ферменты оксидазы, способные разрушать фенобарбитал.

    ферменты органеллы берут участие в синтезе гликогена (в клетках печени).

Функции шероховатой (гранулярной) эндоплазматической сети

Для гранулярной эндоплазматической сети, кроме перечисленных общих функций, свойственны ещё и специальные:

  • синтез белков на грЭС имеет некоторые особенности. Начинается он на свободных полисомах, которые в дальнейшем связываются с мебранами ЭС.
  • Гранулярная эндоплазматическая сеть синтезирует: все белки клеточной мембраны (кроме некоторых гидрофобных белков, белков внутренних мембран митохондрий и хлоропластов), специфические белки внутренней фазы мембранных органелл, а так же секреторные белки, которые транспортируются по клетке и поступают во внеклеточное пространство.
  • пострансляционная модификация белков : гидроксилирование, сульфатирование, фосфориллирование. Важным процессом является гликозилирование, которое происходит под действием связанного с мембраной фермента гликозилтранферазы. Гликозилирование происходит перед секрецией или транспортом веществ к некоторым участкам клетки (комплексу Гольджи, лизосомам или плазмолемме).
  • транспорт веществ по внутримембранной части сети. Синтезированные белки по промежуткам ЭС перемещаются к комплексу Гольджи, который выводит вещества из клетки.
  • благодаря участию гранулярной эндоплазматической сети образуется комплекс Гольджи.

Функции зернистой эндоплазматической сети связаны с транспортом белков, которые синтезируются в рибосомах и расположены на её поверхности. Синтезированные белки поступают внутрь ЭПС, скручиваются и приобретают третичную структуру.

Белок, который транспортируется к цистернам, значительно изменяется на своём пути. Он может, например, фосфорилироваться или превращаться в гликопротеид. Обычный путь для белка – это путь через зернистую ЭПС в аппарат Гольджи, откуда он или выходит наружу клетки, или поступает к другим органеллам той же клетки, например, к лизосомам), или откладывается в виде запасных гранул.

В клетках печени как зернистая, так и незернистая эндоплазматическая сетка берут участие в процессах детоксикации ядовитых веществ, которые потом выводятся из клетки.

Как и внешняя плазматическая мембрана, эндоплазматическая сетка имеет избирательную проницаемость, вследствие чего концентрация веществ внутри и снаружи каналов сетки неодинакова. Это имеет значение для функции клетки.

Пример 2

В эндоплазматической сетке мышечных клеток больше ионов кальция, чем в её цитоплазме. Выходя из каналов эндоплазматической сетки, ионы кальция запускают процесс сокращения мышечных волокон.

Образование эндоплазматической сети

Липидные компоненты мембран эндоплазматической сети синтезируются ферментами самой сети, белковый – поступает из рибосом, расположенных на её мембранах. В гладкой (агранулярной) эндоплазматической сети нет собственных факторов синтеза белка, потому считается, что эта органелла образуется в результате потери рибосом гранулярной эндоплазматической сетью.

Что общего у гнилого яблока и головастика? Процесс гниения фруктов и процесс превращения головастика в лягушку связан с одним и тем же феноменом - автолизом. Руководят им уникальные структуры клеток - лизосомы. Крошечные лизосомы размером от 0,2 до 0,4 мкм разрушают не только другие органоиды, но даже целые ткани и органы. Они содержат от 40 до 60 разных лизирующих ферментов, под действием которых ткани буквально плавятся на глазах. О структуре и функциях наших внутренних биохимических лабораторий: лизосом, аппарата Гольджи и эндоплазматической сети, - вы узнаете в нашем уроке. Также мы поговорим о клеточных включениях - особом типе клеточных структур.

Тема: Основы цитологии

Урок: Строение клетки. Эндоплазматическая сеть. Комплекс Гольджи.

Лизосомы. Клеточные включения

Мы продолжаем изучать органоиды клетки.

Все органоиды делятся на мембранные и немембранные .

Немембранные органоиды мы рассмотрели на предыдущем занятии, напомним, что к ним относятся рибосомы, клеточный центр и органоиды движения.

Среди мембранных органоидов различают одномембранные и двумембранные .

В этой части курса мы рассмотрим одномембранные органоиды: эндоплазматическую сеть, аппарат Гольджи и лизосомы .

Кроме этого, мы рассмотрим включения - непостоянные образования клетки, которые возникают и исчезают в процессе жизнедеятельности клетки.

Эндоплазматическая сеть

Одним из самых важных открытий, сделанных с помощью электронного микроскопа, было обнаружение сложной системы мембран, пронизывающей цитоплазму всех эукариотических клеток. Эта сеть мембран в дальнейшем получила название ЭПС (эндоплазматической сети) (рис. 1) или ЭПР (эндоплазматического ретикулума). ЭПС представляет систему трубочек и полостей, пронизывающей цитоплазму клетки.

Рис. 1. Эндоплазматическая сеть

Слева - среди других органоидов клетки. Справа - отдельно выделенная

Мембраны ЭПС (рис. 2) имеют такое же строение, как и клеточная или плазматическая мембрана (плазмалемма). ЭПС занимает до 50% объема клетки. Она нигде не обрывается и не открывается в цитоплазму.

Различают гладкую ЭПС и шероховатую , или гранулярную ЭПС (рис. 2). На внутренних мембранах шероховатой ЭПС располагаются рибосомы - здесь идет синтез белков.

Рис. 2. Виды ЭПС

Шероховатая ЭПС (слева) несет на мембранах рибосомы и отвечает за синтез белка в клетке. Гладкая ЭПС (справа) не содержит рибосом и отвечает за синтез углеводов и липидов.

На поверхности гладкой ЭПС (рис. 2) идет синтез углеводов и липидов. Вещества, синтезированные на мембранах ЭПС, переносятся в трубочки и затем транспортируются к местам назначения, где депонируются или используются в биохимических процессах.

Шероховатая ЭПС лучше развита в клетках, которые синтезируют белки для нужд организма, например, белковые гормоны эндокринной системы человека. А гладкая ЭПС - в тех клетках, которые синтезируют сахара и липиды.

В гладкой ЭПС накапливаются ионы кальция (важные для регуляции всей функций клеток и целого организма).

Структуру, известную сегодня как комплекс или аппарат Гольджи (АГ) (рис. 3), впервые обнаружил в 1898 году итальянский ученый Камилло Гольджи ().

Подробно изучить строение комплекса Гольджи удалось значительно позже с помощью электронного микроскопа. Эта структура содержится практически во всех эукариотических клетках, и представляет собой стопку уплощенных мембранных мешочков, т. н. цистерн, и связанную с ними систему пузырьков, называемых пузырьками Гольджи .

Рис. 3. Комплекс Гольджи

Слева - в клетке, среди других органоидов.

Справа - комплекс Гольджи с отделяющимися от него мембранными пузырьками

Во внутриклеточных цистернах накапливаются вещества, синтезированные клеткой, т. е. белки, углеводы, липиды.

В этих же цистернах вещества, поступившие из ЭПС , претерпевают дальнейшие биохимические превращения, упаковываются в мембранные пузырьки и доставляются к тем местам клетки, где они необходимы. Они участвуют в достройке клеточной мембраны или выделяются наружу (секретируются ) из клетки.

Комплекс Гольджи построен из мембран и расположен рядом с ЭПС, но не сообщается с её каналами.

Все вещества, синтезированные на мембранах ЭПС (рис. 2), переносятся в комплекс Гольджи в мембранных пузырьках , которые отпочковываются от ЭПС и сливаются затем с комплексом Гольджи, где они претерпевают дальнейшие изменения.

Одна из функций комплекса Гольджи - сборка мембран. Вещества, из которых состоят мембраны - белки и липиды, как вы уже знаете, - поступают в комплекс Гольджи из ЭПС.

В полостях комплекса собираются участки мембран, из которых образуются особые мембранные пузырьки (рис. 4), они передвигаются по цитоплазме в те места, где необходима достройка мембраны.

Рис. 4. Синтез мембран в клетке комплексом Гольджи (см. видео)

В комплексе Гольджи синтезируются практически все полисахариды, необходимые для построения клеточной стенки клеток растений и грибов. Здесь они упаковываются в мембранные пузырьки, доставляются к клеточной стенке и сливаются с ней.

Таким образом, основные функция комплекса (аппарата) Гольджи - химическое превращение синтезированных в ЭПС веществ, синтез полисахаридов, упаковка и транспорт органических веществ в клетке, формирование лизосомы.

Лизосомы (рис. 5) обнаружены у большинства эукариотических организмов, но особенно много их в клетках, которые способны к фагоцитозу. Они представляют собой одномембранные мешочки, наполненные гидролитическими или пищеварительными ферментами, такими как липазы, протеазы и нуклеазы , т. е. ферменты, которые расщепляют жиры, белки и нуклеиновые кислоты.

Рис. 5. Лизосома - мембранный пузырек, содержащий гидролитические ферменты

Содержимое лизосом имеет кислую реакцию - для их ферментов характерен низкий оптимум pH. Мембраны лизосомы изолируют гидролитические ферменты, не давая им разрушать другие компоненты клетки. В клетках животных лизосомы имеют округлую форму, их диаметр - от 0,2 до 0,4 микрон.

В растительных клетках функцию лизосом выполняют крупные вакуоли. В некоторых растительных клетках, особенно погибающих, можно заметить небольшие тельца, напоминающие лизосомы.

Скопление веществ, которые клетка депонирует, использует для своих нужд, или хранит для выделения вовне, называют клеточными включениями .

Среди них зерна крахмала (запасной углевод растительного происхождения) или гликогена (запасной углевод животного происхождения), капли жира , а также гранулы белков .

Эти запасные питательные вещества располагаются в цитоплазме свободно и не отделены от неё мембраной.

Функции ЭПС

Одна из самых важных функций ЭПС - синтез липидов . Поэтому ЭПС обычно представлена в тех клетках, где интенсивно происходит этот процесс.

Как происходит синтез липидов? В клетках животных липиды синтезируются из жирных кислот и глицерина, которые поступают с пищей (в клетках растений они синтезируются из глюкозы). Синтезированные в ЭПС липиды передаются в комплекс Гольджи, где «дозревают».

ЭПС представлена в клетках коры надпочечников и в половых железах, поскольку здесь синтезируются стероиды, а стероиды - гормоны липидной природы. К стероидам относится мужской гормон тестостерон, и женский гормон эстрадиол.

Ещё одна функция ЭПС - участие в процессах детоксикации. В клетках печени шероховатая и гладкая ЭПС участвуют в процессах обезвреживания вредных веществ, поступающих в организм. ЭПС удаляет яды из нашего организма.

В мышечных клетках присутствуют особые формы ЭПС - саркоплазматический ретикулум . Саркоплазматический ретикулум - один из видов эндоплазматической сети, который присутствует в поперечнополосатой мышечной ткани. Его основной функцией является хранение ионов кальция, и введение их в саркоплазму - среду миофибрилл.

Секреторная функция комплекса Гольджи

Функцией комплекса Гольджи является транспорт и химическая модификация веществ. Особенно хорошо это видно в секреторных клетках.

В качестве примера можно привести клетки поджелудочной железы, синтезирующие ферменты панкреатического сока, который затем выходит в проток железы, открывающийся в двенадцатиперстную железу.

Исходным субстратом для ферментов служат белки, поступающие в комплекс Гольджи из ЭПС. Здесь с ними происходят биохимические превращения, они концентрируются, упаковываются в мембранные пузырьки и перемещаются к плазматической мембране секреторной клетки. Затем они выделяются наружу посредством экзоцитоза.

Ферменты поджелудочной железы секретируются в неактивной форме, чтобы они не разрушали клетку, в которой образуются. Неактивная форма фермента называется проферментом или энзимогеном . Например, фермент трипсин, образуется в неактивной форме в виде трипсиногена в поджелудочной железе и переходит в свою активную форму - трипсин в кишечнике.

Комплексом Гольджи синтезируется также важный гликопротеин - муцин . Муцин синтезируется бокаловидными клетками эпителия, слизистой оболочки желудочно-кишечного тракта и дыхательных путей. Муцин служит барьером, защищающим расположенные под ним эпителиальные клетки от разных повреждений, в первую очередь, механических.

В желудочно-кишечном тракте эта слизь защищает нежную поверхность эпителиальных клеток от действия грубого комка пищи. В дыхательных путях и желудочно-кишечном тракте муцин защищает наш организм от проникновения патогенов - бактерий и вирусов.

В клетках кончика корня растений комплекс Гольджи секретирует мукополисахаридную слизь, которая облегчает продвижение корня в почве.

В железах на листьях насекомоядных растений, росянки и жирянки (рис. 6), аппарат Гольджи производит клейкую слизь и ферменты, с помощью которых эти растения ловят и переваривают добычу.

Рис. 6. Клейкие листья насекомоядных растений

В клетках растений комплекс Гольджи также участвует в образовании смол, камедей и восков.

Автолиз

Автолиз - это саморазрушение клеток, возникающее вследствие высвобождения содержимого лизосом внутри клетки.

Благодаря этому лизосомы в шутку называют «орудиями самоубийства». Автолиз представляет собой нормальное явление онтогенеза, он может распространяться как на отдельные клетки, так и на всю ткань или орган, как это происходит при резорбции хвоста головастика во время метаморфоза, т. е. при превращении головастика в лягушку (рис. 7).

Рис. 7. Резорбция хвоста лягушки благодаря автолизу в ходе онтогенеза

Автолиз происходит в мышечной ткани, остающейся долго без работы.

Кроме этого, автолиз наблюдается у клеток после гибели, поэтому вы могли наблюдать, как продукты питания сами портятся, если они не были заморожены.

Таким образом, мы рассмотрели основные одномембранные органоиды клетки: ЭПС, комплекс Гольджи и лизосомы, выяснили их функции в процессах жизнедеятельности отдельной клетки и организма в целом. Установили связь между синтезом веществ в ЭПС, транспортом их в мембранных пузырьках в комплекс Гольджи, «дозреванием» веществ в комплексе Гольджи и выделением их из клетки при помощи мембранных пузырьков, в том числе лизосом. Также мы говорили о включениях - непостоянных структурах клетки, которые представляют собой скопления органических веществ (крахмала, гликогена, капель масла или гранул белка). Из приведенных в тексте примеров мы можем сделать вывод о том, что процессы жизнедеятельности, которые происходят на клеточном уровне, отражаются на функционировании целого организма (синтез гормонов, автолиз, накопление питательных веществ).

Домашнее задание

1. Что такое органоиды? Чем органоиды отличаются от клеточных включений?

2. Какие группы органоидов бывают в клетках животных и растений?

3. Какие органоиды относятся к одномембранным?

4. Какие функции выполняет ЭПС в клетках живых организмов? Какие виды ЭПС выделяют? С чем это связано?

5. Что такое комплекс (аппарат) Гольджи? Из чего он состоит? Каковы его функции в клетке?

6. Что такое лизосомы? Для чего они нужны? В каких клетках нашего организма они активно функционируют?

7. Как связаны друг с другом ЭПС, комплекс Гольджи и лизосомы?

8. Что такое автолиз? Когда и где он происходит?

9. Обсудите с друзьями явление автолиза. Каково его биологическое значение в онтогенезе?

2. YouTube ().

3. Биология 11 класс. Общая биология. Профильный уровень / В. Б. Захаров, С. Г. Мамонтов, Н. И. Сонин и др. - 5-е изд., стереотип. - Дрофа, 2010. - 388 с.

4. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.