Условия труда. Обеспечение комфортных условий жизнедеятельности в техносфере Методы обеспечения комфортных климатических условий

Под микроклиматом производственных помещений понимается климат окружающей человека внутренней среды этих помещений который определяется действующими на организм человека сочетаниями температуры влажности и скорости движения воздуха а также температуры окружающих его поверхностей. Отвод теплоты от тела человека в окружающую среду Q осуществляется конвекцией Qконв в результате нагрева воздуха омывающего тело человека инфракрасным излучением на окружающие поверхности с более низкой температурой Qизл испарением влаги с поверхности кожи...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


PAGE 17

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

ГОУ ВПО Тамбовский государственный технический университет

(Многопрофильный колледж)

Кафедра "Безопасность жизнедеятельности"

Утверждаю

Заведующий кафедрой

Л.А.Харкевич

«_____»____________2013 года

Экз. №__

Методическая разработка

для проведения занятия по дисциплине «Безопасность жизнедеятельности»

Тема 1.4: Обеспечение комфортных условий жизнедеятельности. Микроклимат производственных помещений.

Лекция № 2

ТАМБОВ – 2013


Учебные цели: Рассмотреть влияние метеорологических условий на организм человека, параметры микроклимата и их гигиеническое нормирование.

Учебные вопросы:

1. Влияние метеорологических условий на организм человека

2. Гигиеническое нормирование параметров микроклимата производственных помещений

3 . Вентиляция и кондиционирование.

Вид занятия – лекция.

Время – 2 часа (90 мин).

Место – учебный класс.

Литература:

1. Примерная программа дисциплины «Безопасность жизнедеятельности» для всех специальностей среднего профессионального образования, 2000 г.

2. Рабочая программа дисциплины.

3. Безопасность жизнедеятельности. Учебник для студентов средних профессиональных учебных заведений / С.В.Белов, В.А. Девисилов и др. – М. : Высш. шк., 2000.

4. А. Т. Смирнов , . А. Дурнев , Крючек , Шахраманьян . Безопасность жизнедеятельности: учебное пособие. (2005 г.)

5.. Энциклопедические и справочные издания по строению тела человека.

6. Ресурсы Интернет.


Введение

Одним из необходимых условий нормальной жизнедеятельности человека является обеспечение в помещениях нормальных метеорологических условий, оказывающих существенное влияние на тепловое самочувствие человека.

Метеорологические условия в производственных помещениях, или их микроклимат , зависят от теплофизических особенностей технологического процесса, климата, сезона года, условий вентиляции и отопления.

Под микроклиматом производственных помещений понимается климат окружающей человека внутренней среды этих помещений, который определяется действующими на организм человека сочетаниями температуры, влажности и скорости движения воздуха, а также температуры окружающих его поверхностей.

Перечисленные параметры – каждый в отдельности и в совокупности – оказывают влияние на работоспособность человека, его здоровье.

Человек постоянно находится в процессе теплового взаимодействия с окружающей средой. Для нормального течения физиологических процессов в организме человека необходимо, чтобы выделяемое организмом тепло отводилось в окружающую среду. Когда это условие соблюдается, наступают условия комфорта и у человека не ощущается беспокоящих его тепловых ощущений - холода или перегрева.

1 вопрос. Влияние метеорологических условий на организм человека

Метеорологические условия производственных помещений (микроклимат) оказывают большое влияние на самочувствие человека и на производительность его труда.

Для совершения различных видов работы человеку необходима энергия, которая высвобождается в его организме в процессах окислительно-восстановительного распада углеводов, белков, жиров и других органических соединений, содержавшихся в продуктах питания..

Высвобожденная энергия частично расходуется на совершение полезной работы, а частично (до 60 %) рассеивается в виде теплоты в живых тканях, нагревая тело человека.

При этом благодаря механизму терморегуляции температура тела поддерживается на уровне 36,6 °С. Терморегуляция осуществляется тремя способами: 1) изменением скорости окислительных реакций; 2) изменением интенсивности кровообращения; 3) изменением интенсивности потовыделения. Первым способом регулируется выделение теплоты, вторым и третьим способами — теплоотвод. Допускаемые отклонения температуры человеческого тела от нормальной весьма незначительны. Максимальная температура внутренних органов, которую выдерживает человек, составляет 43 °С, минимальная — плюс 25 °С.

Для обеспечения нормального функционирования организма необходимо, чтобы вся выделяемая теплота отводилась в окружающую среду, а изменения параметров микроклимата находились в пределах зоны комфортных условий труда. При нарушении комфортных условий труда наблюдается повышенная утомляемость, снижается производительность труда, возможны перегрев или переохлаждение организма, а в особо тяжелых случаях наступает потеря сознания и даже смерть.

Отвод теплоты от тела человека в окружающую среду Q осуществляется конвекцией Q конв в результате нагрева воздуха, омывающего тело человека, инфракрасным излучением на окружающие поверхности с более низкой температурой Q изл , испарением влаги с поверхности кожи (пот) и верхних дыхательных путей Q исп . Комфортные условия обеспечиваются при соблюдении теплового баланса:

Q = Q конв + Q ииз + Q исп

При нормальной температуре и небольшой скорости воздуха в помещении человек, находящийся в состоянии покоя, теряет теплоту: в результате конвекции — около 30 %, излучением — 45 %, испарением —25 %. Это соотношение может изменяться, так как процесс отдачи теплоты зависит от многих факторов. Интенсивность конвективного теплообмена определяется температурой окружающей среды, подвижностью и влагосодержанием воздуха. Излучение теплоты от тела человека на окружающие поверхности может происходить только в том случае, если температура этих поверхностей ниже температуры поверхности одежды и открытых частей тела. При высоких температурах окружающих поверхностей процесс теплоотдачи излучением идет в обратном направлении — от нагретых поверхностей к человеку. Количество теплоты, отводимого при испарении пота, зависит от температуры, влажности и скорости движения воздуха, а также от интенсивности физической нагрузки.

Человек обладает наибольшей работоспособностью, если температура воздуха находится в пределах 16—25 °С. На изменение температуры окружающего воздуха человеческий организм благодаря механизму терморегуляции отзывается сужением или расширением кровеносных сосудов, расположенных у поверхности тела. При снижении температуры кровеносные сосуды сужаются, приток крови к поверхности уменьшается и соответственно уменьшается отвод теплоты конвекцией и излучением. Противоположная картина наблюдается при повышении температуры окружающего воздуха: кровеносные сосуды расширяются, приток крови увеличивается и соответственно увеличивается теплоотдача в окружающую среду. Однако при температуре порядка 30 - 33 °С, близкой к температуре тела человека, отвод теплоты конвекцией и излучением практически прекращается, и большая часть теплоты отводится путем испарения пота с поверхности кожи. В этих условиях организм теряет много влаги, а с ней и соли (до 30—40 г в сутки). Потенциально это очень опасно, и поэтому должны приниматься меры для компенсации этих потерь.

Например, в горячих цехах рабочие получают подсоленную (до 0,5 %) газированную воду.

Большое влияние на самочувствие человека и связанные с ним процессы терморегуляции оказывают влажность и скорость воздуха.

Относительная влажность воздуха φ выражается в процентах и представляет собой отношение фактического содержания (г/м 3 ) паров воды в воздухе (D ) к максимально возможному влагосодержанию при данной температуре (D о):

или отношение абсолютной влажностью Р n (парциальное давление водяных паров в воздухе, Па) к максимально возможной Р max при данных условиях (давление насыщенных паров)

(Парциальное давление –давление компонента идеальной газовой смеси, которое он оказывал бы, если бы занимал один объем всей смеси).

От влажности воздуха напрямую зависит отвод тепла при потовыделении, так как тепло отводится только в том случае, если выделяющийся пот испаряется с поверхности тела. При повышенной влажности (φ > 85 %) испарение пота снижается вплоть до полного его прекращения при φ = 100 %, когда пот каплями стекает с поверхности тела. Такое нарушение теплоотвода может привести к перегреву организма.

Пониженная влажность воздуха (φ < 20 %), наоборот, сопровождается не только быстрым испарением пота, но и усиленным испарением влаги со слизистых оболочек дыхательных путей. При этом наблюдается их пересыхание, растрескивание и даже загрязнение болезнетворными микроорганизмами. Сам же процесс дыхания может сопровождаться болевыми ощущениями. Нормальная величина относительной влажности 30—60 %.

Скорость движения воздуха в помещении заметно влияет на самочувствие человека. В теплых помещениях при малых скоростях движения воздуха отвод тепла конвекцией (в результате омывания тепла потоком воздуха) очень затруднен и может наблюдаться перегрев организма человека. Увеличение скорости воздуха способствует увеличению отдачи теплоты, и это благотворно сказывается состоянии организма. Однако при больших скоростях движения воздуха создаются сквозняки, которые ведут к простудным заболеваниям как при высоких, так и при низких температурах в помещении.

Скорость воздуха в помещении устанавливают в зависимости от времени года и некоторых других факторов. Так, например, для помещений без значительных выделений теплоты скорость воздуха в зимнее время устанавливается в пределах 0,3—0,5 м/с, а в летнее время — 0,5—1 м/с.

В горячих цехах (помещениях с температурой воздуха более 30 °С) для защиты человека от воздействия теплового излучения применяется так называемый воздушный душ. В этом случае на работающего направляется струя увлажненного воздуха, скорость которой может доходить до 3,5 м/с.

Значительное влияние на жизнедеятельность человека оказывает атмосферное давление . В естественных условиях у поверхности Земли атмосферное давление может колебаться в пределах 680—810 мм рт. ст., но практически жизнедеятельность абсолютного большинства населения протекает в более узком интервале давлений: от 720 до 770 мм рт. ст. Атмосферное давление быстро уменьшается с ростом высоты: на высоте 5 км оно составляет 405, а на высоте 10 км — 168 мм рт. ст. Для человека снижение давления потенциально опасно, причем опасность представляет как само уменьшение давления, так и скорость его изменения (при резком снижении давления возникают болезненные ощущения).

При снижении давления ухудшается поступление кислорода в организм человека в процессе дыхания, но до высоты 4 км человек за счет увеличения нагрузки на легкие и сердечно-сосудистую систему сохраняет удовлетворительное самочувствие и работоспособность. Начиная с высоты 4 км поступление кислорода снижается настолько, что может наступить кислородное голодание — гипоксия . Поэтому при нахождении на больших высотах используются кислородные приборы, а в авиации и космонавтике — скафандры. Кроме того, в летательных аппаратах прибегают к герметизации кабин. В некоторых случаях, например при выполнении водолазных работ или проходке туннелей в водонасыщенных грунтах, работающие находятся в условиях повышенного давления. Поскольку растворимость газов в жидкостях с повышением давления растет, кровь и лимфа работающих насыщаются азотом. Это создает потенциальную опасность так называемой « кессонной болезни», которая развивается тогда, когда происходит быстрое снижение давления. В этом случае азот выделяется с большой скоростью и кровь как бы «вскипает». Образующиеся пузырьки азота закупоривают мелкие и средние кровеносные сосуды, причем этот процесс сопровождается резкими болевыми ощущениями («газовая эмболия»). Нарушения в жизнедеятельности организма могут быть столь серьезными, что иногда приводят к смертельному исходу. Чтобы избежать опасных последствий, снижение давления проводят медленно, в течение многих суток, с тем чтобы избыточный азот удалялся естественным путем при дыхании через легкие.

Для создания нормальных метеоусловий в производственных помещениях осуществляются следующие мероприятия:

механизация и автоматизация тяжелых и трудоемких работ, что позволяет освободить рабочих от выполнения тяжелой физической нагрузки, сопровождающейся значительным выделением теплоты в организме человека;

дистанционное управление теплоизлучающими процессами и аппаратами, что дает возможность исключить пребывание работающих в зоне интенсивного теплового излучения;

вынос оборудования со значительным выделением тепла на открытые площадки; при установке такого оборудования в закрытых Помещениях необходимо по возможности исключить направление лучистой энергии на рабочие места;

теплоизоляция горячих поверхностей; теплоизоляцию рассчитывают таким образом, чтобы температура внешней поверхности теплоизлучающего оборудования не превышала 45 °С;

установка теплозащитных экранов (теплоотражающих, теплопоглощающих и теплоотводящих);

устройство воздушных завес или воздушного душирования;

устройство различных систем вентиляции и кондиционирования;

устройство в помещениях с неблагоприятным температурным режимом специальных мест для кратковременного отдыха; в холодных цехах это обогреваемые помещения, в горячих — помещения, в которые подается охлажденный воздух.

2 вопрос. Гигиеническое нормирование параметров микроклимата производственных помещений

Нормы производственного микроклимата установлены системой стандартов безопасности труда ГОСТ 12.1.005-88 "Общие санитарно-гигиенические требования к воздуху рабочей зоны" и СанПиН 2.24.548-96 "Гигиенические требования к микроклимату производственных помещений". Они едины для всех производств и всех климатических зон с некоторыми незначительными отступлениями.

В этих нормах отдельно нормируется каждый компонент микроклимата в рабочей зоне производственного помещения: температура, относительная влажность, скорость воздуха в зависимости от способности организма человека к акклиматизации в разное время года, характера одежды, интенсивности производимой работы и характера тепловыделений в рабочем помещении.

Для оценки характера одежды (теплоизоляции) и акклиматизации организма в разное время года введено понятие периода года. Различают теплый и холодный период года. Теплый период года характеризуется среднесуточной температурой наружного воздуха +10ºС и выше, холодный - ниже +10ºС.

При учете интенсивности труда все виды работ, исходя из общих энергозатрат организма, делятся на три категории: легкие, средней тяжести и тяжелые. Характеристику производственных помещений по категории выполняемых в них работ устанавливают по категории работ, выполняемых 50% и более работающих в соответствующем помещении.

К легким работам (категории I) с затратой энергии до 174 Вт относятся работы, выполняемые сидя или стоя, не требующие систематического физического напряжения (работа контролеров, в процессах точного приборостроения, конторские работы и др.). Легкие работы подразделяют на категорию Iа (затраты энергии до 139 Вт) и категорию Iб (затраты энергии 140... 174 Вт).

К работам средней тяжести (категория, II) относят работы с затратой энергии 175...232 Вт (категория IIа) и 233. ..290 Вт (категория IIб). В категорию IIа входят работы, связанные с постоянной ходьбой, выполняемые стоя или сидя, но не требующие перемещения тяжестей, в категорию IIб - работы, связанные с ходьбой и переноской небольших (до 10 кг) тяжестей (в механосборочных цехах, текстильном производстве, при обработке древесины и др.).

К тяжелым работам (категория III) с затратой энергии более 290 Вт относят работы, связанные с систематическим физическим напряжением, в частности с постоянным передвижением, с переноской значительных (более 10 кг) тяжестей (в кузнечных, литейных цехах с ручными процессами и др.).

По интенсивности тепловыделений производственные помещения делят на группы в зависимости от удельных избытков явной теплоты. Явной называется теплота, воздействующая на изменение температуры воздуха помещения, а избытком явной теплоты - разность между суммарными поступлениями явной теплоты и суммарными теплопотерями в помещении.

Явная теплота, которая образовалась в пределах помещения, но была удалена из него без передачи теплоты воздуху помещения (например, с газами от дымоходов или с воздухом местных отсосов от оборудования), при расчете избытков теплоты не учитывается. Незначительные избытки явной теплоты - это избытки теплоты, не превышающие или равные 23 Вт на 1 м 3 внутреннего объема помещения. Помещения со значительными избытками явной теплоты характеризуются избытками теплоты более 23 Вт/м 3 .

Интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать 35 Вт/м 2 при облучении 50 % поверхности человека и более, 70 Вт/м 2 - при облучении 25...50 % поверхности и 100 Вт/м 2 - при облучении не более 25 % поверхности тела.

Интенсивность теплового облучения работающих от открытых источников (нагретого металла, стекла, открытого пламени и др.) не должна превышать 140 Вт/м 2 , при этом облучению не должно подвергаться более 25% поверхности тела и обязательно использование средств индивидуальной защиты.

В рабочей зоне производственного помещения согласно ГОСТу могут быть установлены оптимальные и допустимые микроклиматические условия.

Оптимальные условия микроклимата

Оптимальные микроклиматические условия установлены по критериям оптимального теплового и функционального состояния человека. Они обеспечивают общее и локальное ощущение теплового комфорта в течение 8-часовой рабочей смены при минимальном напряжении механизмов терморегуляции, не вызывают отклонений в состоянии здоровья, создают предпосылки для высокого уровня работоспособности и являются предпочтительными на рабочих местах .

Оптимальные величины показателей микроклимата необходимо соблюдать на рабочих местах производственных помещений, на которых выполняются работы операторского типа, связанные с нервно - эмоциональным напряжением (в кабинах, на пультах и постах управления технологическими процессами, в залах вычислительной техники и др., табл. 1).

Перепады температуры воздуха по высоте и по горизонтали, а также изменения температуры воздуха в течение смены при обеспечении оптимальных величин микроклимата на рабочих местах не должны превышать 2° C и выходить за пределы величин, указанных в табл. 1 для отдельных категорий работ.

Допустимые условия микроклимата

Допустимые микроклиматические условия установлены по критериям допустимого теплового и функционального состояния человека на период 8-часовой рабочей смены. Они не вызывают повреждений или нарушений состояния здоровья, но могут приводить к возни-

Таблица 1 – Оптимальные величины показателей микроклимата на рабочих

местах производственных помещений

Период года

Температура воздуха, °C

Температура поверхностей, °C

Холодный

Iа (до 139)

22 - 24

21 - 25

60 - 40

Iб (140 - 174)

21 - 23

20 - 24

60 - 40

IIа (175 - 232)

19 - 21

18 - 22

60 - 40

IIб (233 - 290)

17 - 19

16 - 20

60 - 40

III (более 290)

16 - 18

15 - 19

60 - 40

Теплый

Iа (до 139)

23 - 25

22 - 26

60 - 40

Iб (140 - 174)

22 - 24

21 - 25

60 - 40

IIа (175 - 232)

20 - 22

19 - 23

60 - 40

IIб (233 - 290)

19 - 21

18 - 22

60 - 40

III (более 290)

18 - 20

17 - 21

60 - 40

Таблица 2 – Допустимые величины показателей микроклимата на рабочих местах производственных помещений

Период года

Температура воздуха, °C

Температура поверхностей, °C

Относительная влажность воздуха, %

Скорость движения воздуха, м/с

диапазон ниже оптимальных величин

диапазон выше оптимальных величин

для диапазона температур воздуха ниже оптимальных величин, не более

для диапазона температур воздуха выше оптимальных величин, не более **

Холодный

Iа (до 139)

20,0 - 21,9

24,1 - 25,0

19,0- 26,0

15 - 75 *

Iб (140 - 174)

19,0 - 20,9

23,1 - 24,0

18,0- 25,0

15 - 75

IIа (175 - 232)

17,0 - 18,9

21,1 - 23,0

16,0- 24,0

15 - 75

IIб (233 - 290)

15,0 - 16,9

19,1 - 22,0

14,0- 23,0

15 - 75

III (более 290)

13,0 - 15,9

18,1 - 21,0

12,0- 22,0

15 - 75

Теплый

Iа (до 139)

21,0 - 22,9

25,1 - 28,0

20,0- 29,0

15 - 75 *

Iб (140 - 174)

20,0 - 21,9

24,1 - 28,0

19,0- 29,0

15 - 75 *

IIа (175 - 232)

18,0 - 19,9

22,1 - 27,0

17,0- 28,0

15 - 75 *

IIб (233 - 290)

16,0 - 18,9

21,1 - 27,0

15,0- 28,0

15 - 75 *

III (более 290)

15,0 - 17,9

20,1 - 26,0

14,0- 27,0

15 - 75 *

* При температурах воздуха 25° C и выше максимальные величины относительной влажности воздуха должны приниматься в соответствии со специальными требованиями .

** При температурах воздуха 26 - 28° C скорость движения воздуха в теплый период года должна приниматься в соответствии со специальными требованиями

кновению общих и локальных ощущений теплового дискомфорта, напряжению механизмов терморегуляции, ухудшению самочувствия и понижению работоспособности .

Допустимые величины показателей микроклимата устанавливаются в случаях, когда по технологическим требованиям, техническим и экономически обоснованным причинам не могут быть обеспечены оптимальные величины (табл. 2).

При обеспечении допустимых величин микроклимата на рабочих местах:

перепад температуры воздуха по высоте должен быть не более 3° C;

перепад температуры воздуха по горизонтали, а также ее изменения в течение смены не должны превышать:

При этом абсолютные значения температуры воздуха не должны выходить за пределы величин, указанных в табл. 2. для отдельных категорий работ .

Работающих на рабочих местах от производственных источников, нагретых до темного свечения (материалов, изделий и др.) должны соответствовать значениям, приведенным в табл. 2.

Допустимые величины интенсивности теплового облучения работающих от источников излучения, нагретых до белого и красного свечения (раскаленный или расплавленный металл, стекло, пламя и др.) не должны превышать 140 Вт/кв.м. При этом облучению не должно подвергаться более 25% поверхности тела и обязательным является использование средств индивидуальной защиты, в том числе средств защиты лица и глаз.

При наличии теплового облучения работающих температура воздуха на рабочих местах не должна превышать в зависимости от категории работ следующих величин:

25° C – при категории работ Iа ;

24° C – при категории работ Iб ;

22° C – при категории работ IIа ;

21° C – при категории работ IIб ;

20° C – при категории работ III.

Таблица 1.3 – Допустимые величины интенсивности теплового облучения

Поверхности тела работающих от производственных источников

Облучаемая поверхность тела, %

Интенсивность теплового облучения, Вт/кв. м, не более

50 и более

25 - 50

не более 25

3. Вентиляция и кондиционирование.

Эффективным средством обеспечении допустимых показателей микроклимата воздуха рабочей зоны является промышленная вентиляция. Вентиляцией называется организованный и регулируемый воздухообмен, обеспечивающий удаление из помещения воздуха и подачу на его место свежего.

По способу перемещения воздуха различают системы естественной и механической вентиляции.

Естественная вентиляция . Это система вентиляции, перемещение воздушных масс в которой осуществляется благодаря возникающей разности давлений снаружи и внутри здания. Разность давлений обусловлена разностью плотностей наружного и внутреннего воздуха и ветровым напором, действующим на здание. При действии ветра на поверхностях здания с подветренной стороны образуется избыточное давление, на заветренной стороне —разряжение. Естественная вентиляция реализуется в виде инфильтрации и аэрации.

Неорганизованная естественная вентиляция — инфильтрация (естественное проветривание) осуществляется сменой воздуха в помещениях через неплотности в ограждениях и элементах строительных конструкций благодаря разности давлений снаружи и внутри помещения. Такой воздухообмен зависит от случайных факторов — силы и направления ветра, температуры воздуха внутри и снаружи здания, вида ограждений и качества строительных работ. Инфильтрация может быть значительной для жилых зданий и достигать О,5...О,75 объема помещения в час, а для промышленных предприятий до 1,5.

Аэрацией называется организованная естественная общеобменная вентиляция помещений в результате поступления и удаления воздуха через открывающиеся фрамуги окон и фонарей. Воздухообмен в помещении регулируют различной степенью открывания фрамуг (в зависимости от температуры наружного воздуха, скорости и направления ветра). Как способ вентиляции, аэрация нашла широкое применение в промышленных зданиях, характеризующихся технологическими процессами с большими тепловыделениями (прокатных цехах, литейных, кузнечных). Поступление наружного воздуха в цех в холодный период года организуют так, чтобы холодный воздух не попадал в рабочую зону. Для этого наружный воздух подают в помещение через проемы (рис. 2.1). расположенные не ниже 4,5 м от пола, в теплый период года приток наружного воздуха вводят через нижний ярус оконных проемов —на высоте 1,5...2 м.

Основным достоинством аэрации является возможность осуществлять большие воздухообмены без затрат механической энергии. К недостаткам аэрации следует отнести то, что в теплый период года эффективность аэрации может существенно падать вследствие повышения температуры наружного воздуха и то, что поступающий в помещение воздух не очищается и не охлаждается.

Механическая вентиляция , с помощью которой воздух подается в производственные помещения или удаляется из них по системам вентиляционных каналов с использованием для этого специальных механических побудителей.

Механическая вентиляция по сравнению с естественной имеет ряд преимуществ: большой радиус действия; возможность изменять или сохранять необходимый воздухообмен; улавливать вредные выделений непосредственно в местах их образования и предотвращать их распространение по всему объему помещенияи др. К недостаткам механической вентиляции следует отнести значительную стоимость ее сооружения и эксплуатации, а также необходимость проведения мероприятий по снижению шума.

Системы механической вентиляции подразделяются на общеобменные, местные, аварийные, смешанные и системы кондиционирования.

Общеобменная вентиляция — эта система вентиляции, которая предназначена для подачи чистого воздуха в помещение, удаления избыточной теплоты, влаги и вредных веществ из помещений. В последнем случае она применяется, если вредные выделения поступают непосредственно в воздух помещения, а рабочие места не фиксированы и располагаются по всему помещению.

Обычно объем воздуха L пр подаваемого в помещение при общеобменной вентиляции, равен объему воздуха L в , удаляемого из помещения. Однако в ряде случаев возникает необходимость нарушить это равенство (рис. 2.2). Так, в особо чистых цехах электровакуумного производства, для которых большое значение имеет отсутствие пыли, объем притока воздуха делается больше объема вытяжки, за счет чего создается некоторый избыток давления в производственном помещении, что исключает попадание пыли из соседних помещений, В общем случае разница между объемами приточного и вытяжного воздуха не должна превышать 10... 15 %.

По способу подачи и удаления воздуха различают четыре схемы общеобменной вентиляции (рис. 2.3): приточная, вытяжная, приточно-вытяжная и системы с рециркуляций. По приточной системе воздух подается в помещение после подготовки его в приточной камере. В повешении при этом создается избыточное давление, за счет которого воздух уходит наружу через окна, двери или в другие помещения Приточную систему применяют для вентиляции помещений, в которые нежелательно попадание загрязненного воздуха из соседних помещений или холодного воздуха извне.

Установки приточной вентиляции (рис. 2.3, а) обычно состоят из следующих элементов: воздухозаборного устройства 1, воздуховодов 2, по которым воздух подается в помещение, фильтров З для очистки воздуха от пыли, калориферов 4, в которых подогревается холодный наружный воздух; побудителя движения воздух; побудителя движения 5, увлажнителя-осушителя 6, приточных отверстий или насадков 7, через которые воздух распределяется по помещению. Воздух из помещения удаляется через неплотности ограждающих конструкций.

Вытяжная система предназначена для удаления воздуха из помещения. При этом в нем создается пониженное давление, и воздух соседних помещений или наружный воздух поступает в данное помещение. Вытяжную систему целесообразно применять в том случае, если вредные выделения в данном помещении не должны распространяться на соседние, например, для химических и биологических лабораторий.

Установки вытяжной вентиляции (рис. 2.3) состоят из вытяжных отверстий или насадков 8, через которые воздух удаляется из помещения; побудителя движения 5; воздуховодов 2; устройств для очистки воздуха от пыли или газов 9, устанавливаемых для защиты атмосферы, и устройства для выброса воздуха 10, которое располагается на 1... 1,5 м выше конька крыши. Чистый воздух поступает в производственное помещение через неплотности в ограждающих конструкциях, что является недостатком данной системы вентиляции, так как неорганизованный приток холодного воздуха (сквозвяки) может вызвать простудные заболевания.

Приточно-вытяжная вентиляция — наиболее распространенная система, при которой воздух подается в помещение приточной системой, а удаляется вытяжной; системы работают одновременно.

В отдельных случаях для сокращения эксплуатационных расходов на нагревание воздуха применяют системы вентиляции с частичной рециркуляцией (рис. 2.3, в). В них к поступающему снаружи воздуху подмешивают воздух, отсасываемый из помещения П вытяжной системой. Количество свежего и вторичного воздуха регулируют клапана ми 11 и 12 Свежая порция воздуха в таких системах обычно составляет 10.20 % общего количества подаваемого воздуха. Систему вентиляции с рециркуляцией разрешается использовать только для тех помещений, в которых отсутствуют выделения вредных веществ или выделяющиеся вещества относятся к 4-му классу опасности, и содержания их в воздухе, подаваемом в помещение, не превышает 0,3 от предельно допустимых концентраций. Применение рециркуляции не допускается и в том случае, если в воздухе помещений содержатся болезнетворные бактерии, вирусы или имеются резко выраженные неприятные запахи.

Существенное влияние на параметры воздушной среды в рабочей зоне оказывают правильная организация и устройство приточной и вытяжных систем. Если плотность выделяющихся газов ниже плотности воздуха, то удаление загрязненного воздуха происходит в верхней зоне, а подача свежего — непосредственно в рабочую зону. При выделении газов с плотностью большей плотности воздуха из нижней части помещения удаляется 60…70 и из верхней части 30-40 % загрязненного воздуха. В помещениях со значительными выделениями влаги вытяжка влажного воздуха осуществляется в верхней зоне, а подача свежего в количестве 60 — в рабочую зону и 40 % — в верхнюю зону.

Расчет потребного воздухообмена при общеобменной вентиляции производят, исходя из условий производства и наличия избыточной теплоты, влаги и вредных веществ. Для качественной оценки эффективности воздухообмена применяют понятие кратности воздухообмена k в — отношение количества воздуха, поступающего в помещение в единицу времени L (м 3 /ч), к объему вентилируемого помещения V п (м 3 ). При правильно организованной вентиляции кратность воздухообмена должна быть в пределах 1... 10.

При нормальном микроклимате и отсутствии вредных выделений количество воздуха при общеобменной вентиляции принимают в зависимости от объема помещения, приходящегося на одного работающего. В производственных помещениях с объемом воздуха на каждого работающего М < 20 м 3 расход воздуха на одного работающего L i , должен быть не менее 30 м 3 /ч. В помещении с V = 20...40 м 3 L ni > 20 м 3 /ч. В помещениях с V > 40 м 3 и при наличии естественной вентиляции воздухообмен не рассчитывают. В случае отсутствия естественной вентиляции (герметичные кабины) расход воздуха на одного работающего должен составлять менее 60 м 3 /ч. Необходимый воздухообмен для всего производственного помещения в целом определяют по формуле:

При определении необходимого воздухообмена - для удаления вредных паров и газов используют уравнение

При одновременном выделении в рабочую зону вредных веществ, не обладающих однонаправленным действием на организм человека, необходимый воздухообмен принимают по наибольшему количеству воздуха, полученному в расчетах для каждого вредного вещества.

При одновременном выделении в воздух рабочей зоны нескольких вредных веществ однонаправленного действия (триоксид серы и диоксид серы; оксиды азота совместно с оксидом углерода и др.) расчет общеобменной вентиляции надлежит производить путем суммирования объемов воздуха, необходимых для разбавления каждого вещества в отдельности до его условных предельно допустимых концентраций.

С помощью местной вентиляции необходимые метеорологические параметры создаются на отдельных рабочих местах. Широкое распространение находит местная вытяжная локализующая вентиляция, основанная на использовании отсосов от укрытий.

Конструкции местных отсосов могут быть полностью закрытыми, полуоткрытыми или открытыми (рис. 2.4). Наиболее эффективны закрытые отсосы. К ним относятся кожухи, камеры, герметично или плотно укрывающие технологическое оборудование (рис. 2.4). Если такие укрытия устроить невозможно, то применяют отсосы с частичным укрытием или открытые: вытяжные зонты, отсасывающие панели, вытяжные шкафы, бортовые отсосы и др.

Один из самых простых видов местных отсосов вытяжной зонт (см. рис. 2.4). Он служит для улавливания вредных веществ, имеющих меньшую плотность, чем окружающий воздух. Зонты устанавливают над ваннами различного назначения, электро- и индукционными печами и над отверстиями для выпуска металла и шлака из вагранок. Зонты делают открытыми со всех сторон и частично открытыми: с одной, двух и трех сторон. Эффективность работы вытяжного зонта зависит от размеров, высоты подвеса и угла его раскрытия. Чем больше Размеры и чем ниже установлен зонт над местом выделения веществ, тем он эффективнее. Наиболее равномерное всасывание обеспечивается при угле раскрытия зонта менее 60°.

Отсасывающие панели применяют для удаления вредных выделений, увлекаемых конвективными токами, при таких ручных операциях, как электросварка, пайка, газовая сварка, резка металла и т. п.

Вытяжные шкафы — наиболее эффективное устройство по сравнению с другими отсосами, так как почти полностью укрывают источник. выделёния вредных веществ. Незакрытыми в шкафах остаются лишь проемы для обслуживания, через которые воздух из помещения поступает в шкаф. Форму проема выбирают в зависимости от характера технологических операций.

Необходимый воздухообмен в устройствах местной вытяжной вентиляции рассчитывают, исходя из условия локализации примесей, выделяющихся из источника образования. Требуемый часовой объем отсасываемого воздуха определяют как произведение площади приемных отверстий отсоса на скорость воздуха в них. Скорость воздуха в проеме отсоса зависит от класса опасности вещества и типа воздухоприемника местной вентиляции и изменяется от 0,5 до 5 м/с.

Смешанная система вентиляции является сочетанием элементов местной и общеобменной вентиляции. Местная система удаляет вредные вещества из кожухов и укрытий машин. Однако часть вредных веществ через неплотности укрытий проникает в помещение. Эта часть удаляется общеобменной вентиляцией.

Аварийная вентиляция предусматривается в тех производственных помещениях, в которых возможно внезапное поступление в воздух большего количества вредных или взрывоопасных веществ.

Кондиционирование . Для создания оптимальных метеорологических условий в производственных и жилых помещениях, в салонах транспортных систем применяют наиболее совершенный вид вентиляции —кондиционирование воздуха. Кондиционированием в о з д у х а называется его автоматическая обработка с целью поддержания в помещениях заранее заданных метеорологических условий независимо от изменения наружных условий и режимов внутри помещения. При кондиционировании автоматически регулируется температура воздуха, его относительная влажность и скорость подачи в помещение в зависимости от времени года, наружных метеорологических условий и характера технологического процесса в помещении. Такие параметры воздуха создаются в специальных установках, называемых кондиционерами. В ряде случаев помимо обеспечения санитарных Норм микроклимата воздуха в кондиционерах производят специальную’ обработку: ионизацию, дезодорацию, озонирование и т. п.

Кондиционеры могут быть местными (для обслуживания отдельных помещений) и центральными (для обслуживания нескольких отдельных помещений). Принципиальная схема кондиционера представлена на рис. 2.5. Наружный воздух очищается от пыли в фильтре 2 и поступает в камеру 1, где он смешивается с воздухом из помещения (при рециркуляции). Пройдя через ступень предварительной температурной обработки 4, воздух поступает в камеру II, где он проходит специальную обработку (промывку воздуха водой, обеспечивающую заданные параметры относительной влажности, и очистку воздуха), и в камеру III (температурная обработка). При температурной обработке зимой воздух подогревается частично за счет температуры воды, поступающей в форсунки 5, и частично, проходя через калориферы 4 и 7. Летом воздух охлаждается частично подачей в камеру II охлажденной (артезианской) воды, и главным образом в итоге работы специальных холодильных машин.

Кондиционирование воздуха играет существенную роль не только с точки зрения безопасности жизнедеятельности, но и во многих технологических процессах, при которых не допускаются колебания температуры и влажности воздуха (особенно в радиоэлектронике). Поэтому установки кондиционирования в последние годы находят все более широкое применение на промышленных предприятиях.

Контроль показателей. Измерения показателей микроклимата проводят в рабочей зоне на высоте 1,5 м от пола, повторяя их в различное время дня и года, в разные периоды технологического процесса. Измеряют температуру, относительную влажность и скорость движения воздуха.

Для измерения температуры и относительной влажности воздуха используют аспирационный психрометр Асмана.

Он состоит из двух термометров. У одного из них ртутный резервуар покрыт тканью, которую увлажняют с помощью пипетки. Сухой термометр показывает температуру воздуха. Показания влажного термометра зависят от относительной влажности воздуха: температура его тем меньше, чем ниже относительная влажность, поскольку с уменьшением влажности возрастает скорость испарения воды с увлажненной ткани и поверхность резервуара охлаждается более интенсивно.

Чтобы исключить влияние подвижности воздуха в помещении на показания влажного термометра (движение воздуха повышает скорость испарения воды с поверхности увлажненной ткани, что ведет к дополнительному охлаждению ртутного баллона с соответствующим занижением измеряемой величины влажности по сравнению с ее истинным значением) оба термометра помещены в металлические защитные трубки. С целью повышения точности и стабильности показаний бора в процессе измерения температуры сухим и влажным термометрами через обе трубки пропускаются постоянные потоки воздуха, создаваемые вентилятором размещенным в верхней части прибора.

Перед измерением в специальную пипетку набирают воду и увлажняют ее тканевую оболочку влажного термометра. При этом прибор держат вертикально, затем взводят часовой механизм и устанавливают (подвешивают или удерживают в руке) в точке измерения.

Через З...5 мин показания сухого и влажного термометров устанавливаются на определенных уровнях, по которым с помощью специальных таблиц рассчитывается относительная влажность воздуха.

Скорость движения воздуха измеряется с помощью анемометров. При скорости движения воздуха свыше 1 м/с используют крыльчатые или чашечные анемометры, при меньших скоростях — термоанемометры.

Принцип действия крыльчатого и чашечного анемометров — механический. Под воздействием аэродинамической силы движущегося потока воздуха ротор прибора с закрепленными на нем крыльями (пластинками) начинает вращаться со скоростью, величина которой соответствует скорости набегающего потока. Через систему зубчатых колес ось соединена с подвижными стрелками. Центральная стрелка показывает единицы и десятки, стрелки мелких циферблатов —сотни и тысячи делений. С помощью расположенного сбоку рычага можно отключить ось от механизма зубчатых колес или подключить ее.

Перед измерением записывают показания циферблатов при отключенной оси. Прибор устанавливают в точке измерения, и ось с закрепленными на ней крыльями начинает вращаться. По секундомеру засекают время и включают прибор. Через 1 мин движением рычага ось отключают и снова записывают показания. Разность показаний прибора делят на 60 (число секунд в минуте) для определения скорости

вращения стрелки — количества проходимых ею делений за 1 с. По найденой величине с помощью прилагаемого к прибору графика определяют скорость движения воздуха секунду.

Для измерения малых скоростей движения воздуха используют термоанемометр, который позволяет также определять температуру воздуха. Принцип измерения основан на изменении электрического сопротивления чувствительного элемента прибора при изменении температуры и скорости воздуха. По величине электрического тока, измеряемого гальванометром, определяют с помощью таблиц скорость движения потока воздуха.

Другие похожие работы, которые могут вас заинтересовать.вшм>

14770. Обеспечение комфортных условий жизнедеятельности. Производственное освещение 394.41 KB
Примерная программа дисциплины Безопасность жизнедеятельности для всех специальностей среднего профессионального образования 2000 г. Освещение использование световой энергии солнца и искусственных источников света для обеспечения зрительного восприятия окружающего мира. При освещении производственных помещений используют: естественное освещение создаваемое прямыми солнечными лучами и рассеянным светом небосвода и меняющимся в зависимости от географической широты времени года и суток степени облачности и прозрачности атмосферы;...
633. Характеристика производственных помещений по степени пожарной опасности 9.62 KB
Все помещения и здания подразделяются на 5 категорий. Б помещения где осуществляются технологические процессы с использованием ЛВЖ с температурой вспышки свыше 28С способные образовывать взрывоопасные и пожароопасные смеси. В помещения и здания где обращаются технологические процессы с использованием горючих и трудногорючих жидкостей твердых горючих веществ которые при взаимодействии друг с другом или кислородом воздуха способны только гореть. Г помещения и здания где обращаются технологические процессы с...
21049. Средства и методы этапа реализации поставленных задач, использование созданных комфортных условий для осуществления деятельности 22.04 KB
Происходящие в настоящее время изменения в экономике остро ставят вопрос о повышении роли физической культуры и спорта в укреплении здоровья граждан. Специалисты народного образования выходящие из стен вуза должны быть подготовлены к внедрению физической культуры и спорта среди учащейся молодёжи должны глубоко понимать их положительное влияние на укрепление здоровья нации. Практика физического воспитания студентов вузов особенно педагогических должна носить опережающий характер так как...
402. АНАЛИЗ УСЛОВИЙ ЖИЗНЕДЕЯТЕЛЬНОСТИ 48.67 KB
Безопасность жизнедеятельности это область знаний в которой изучаются природа опасностей угрожающих человеку и окружающему миру закономерности их формирования и проявления способы предупреждения проявления опасностей защиты от них и ликвидации их последствий. в процессе жизнедеятельности постоянно взаимодействуют друг с другом. Все элементы окружающей человека среды формируют тот феномен который получил название условия жизнедеятельности т.
608. Виды производственных помещений по степени опасности поражения людей электрическим током 8.66 KB
Виды производственных помещений по степени опасности поражения людей электрическим током.13 определяют в отношении опасности поражения людей электрическим током следующие классы помещений: Помещения без повышенной опасности в которых отсутствуют условия создающие повышенную или особую опасность. Особо опасные помещения характеризующиеся наличием одного из следующих условий создающих особую опасность: особой сырости; химически активной или органической среды; одновременно двух или более условий повышенной опасности. В...
13376. Нормативные основы гигиены труда и производственной санитарии. Требования к проектированию предприятий, производственных и вспомогательных помещений 108.56 KB
Требования к проектированию предприятий производственных и вспомогательных помещений Дисциплина: Основы охраны труда – для студентов всех специальностей и форм обучения Мариуполь ПГТУ 2007 Законодательство в области гигиены труда В системе законодательства относительно гигиены труда ключевое место занимает Закон Украины Об обеспечении санитарного и эпидемического благополучия населения. Эта статья предусматривает разработку и осуществление администрацией предприятий санитарных и противоэпидемических мероприятий; осуществление в...
7030. Особенности производственных микроклиматических условий 146.75 KB
Метеорологические условия в производственном помещении в целом, как и на отдельных рабочих местах, часто весьма изменчивы. Зависят от метеорологических условий наружной атмосферы, мощности источников тепловыделений и теплопоглощения в производственном помещении
500. Вредное воздействие производственной пыли на организм человека. Нормативные документы, регламентирующие концентрацию пыли в воздухе производственных помещений 9.86 KB
Вредное воздействие производственной пыли на организм человека. Нормативные документы регламентирующие концентрацию пыли в воздухе производственных помещений. Влияние пыли на организм. Неблагоприятное воздействие пыли на организм может быть причиной возникновения заболеваний.
521. Обеспечение оптимальных микроклиматических условий 4.97 KB
Обеспечение оптимальных микроклиматических условий Эффективным средством обеспечения надлежащей чистоты и допустимых параметров микроклимата воздуха рабочей зоны является промышленная вентиляция. Вентиляцией называется организованный и регулируемый воздухообмен обеспечивающий удаление из помещения загрязненного воздуха и подачу на его место свежего. Для создания оптимальных метеорологических условий в производственных помещениях применяют наиболее совершенный вид промышленной вентиляции кондиционирование воздуха. Кондиционированием воздуха...
634. Обеспечение здоровых и безопасных условий труда на лесохозяйственном предприятии 8.41 KB
Обеспечение здоровых и безопасных условий труда на лесохозяйственном предприятии. Основной целью управления безопасностью труда является организация работы по обеспечению безопасности снижению травматизма и аварийности профессиональных заболеваний улучшению условий труда на основе комплекса задач по созданию безопасных и безвредных условий труда. Задачи: создание системы законодательных и нормативых правовых актов в области охраны труда; надзор и контроль за соблюдением законодательных и нормативно правовых актов; оценка и анализ...

Изучению комфортных условий различных помещений посвящено большое количество работ, при этом под словом «комфорт» понимают бытовые и трудовые удобства, уют помещений, и микроклимат в них. Все эти понятия являются субъективными и вызывают у разных людей разную реакцию организма.

В межгосударственном стандарте ГОСТ 3094-96 «Здания жилые и общественные. Параметры микроклимата в помещениях», под микроклиматом помещения понимают состояние внутренней среды помещения, оказывающее воздействие на человека, характеризуемое показателями температуры воздуха и ограждающих конструкций, влажностью и подвижностью воздуха. Расчетные параметры микроклимата нормируются в зависимости от функционального назначения помещения, среди которых выделяются жилые, детские, дошкольные, и шесть категорий помещений общественных зданий, отличающихся интенсивностью деятельности, типом одежды и продолжительностью пребывания в них людей. Классификация помещений представлена в таблице 1.1.

Таблица 1.1.

Классификация помещений

Категория Классификация помещений
Помещения, в которых люди в положении лежа или сидя находятся в состоянии покоя: и отдыха
Помещения, в которых люди заняты умственным трудом
Помещения с массовым пребыванием людей без верхней одежды. в положении сидя
Помещения с массовым пребыванием людей в верхней одежды. в положении сидя
Помещения с массовым пребыванием людей без верхней одежды. в положении стоя
Помещения для занятий подвижными видами спорта
Помещения, где люди находятся в полураздетом состоянии (кабинет врача, раздевалки)
Помещения с временным пребыванием людей (вестибюли, гардероб, курительные комнаты)

ГОСТ 30494-96 нормирует параметры, характеризующие микроклимат жилых и общественных помещений. К ним относятся: температура, скорость движения, относительная влажность воздуха; результирующая температура помещения, локальная асимметрия результирующей температуры. Требуемые параметры микроклимата зданий заданы для теплого и холодного периода года, к холодному периоду относят период со среднесуточной температурой наружного воздуха +8 ºС, теплому периоду, со среднесуточной температурой наружного воздуха выше +8 ºС.

ГОСТ устанавливает общие требования к оптимальным и допустимым показателям микроклимата и методы их контроля. Под оптимальными параметрами микроклимата понимают такие сочетания микроклимата, при которых длительность и систематическое воздействие их на человека обеспечивает нормальное тепловое состояние организма при минимальных напряжениях механизмов терморегуляции и ощущение теплового комфорта не менее чем у 80% людей, находящихся в помещении. Диапазон оптимальных параметров уже находится внутри зоны допустимых параметров, которые являются обязательными при расчетах и проектировании и представлены для холодного периода

времени в таблице 1.2

Таблица 1.2

Диапазон оптимальных параметров помещения для холодного времени года

Категория помещения Температура воздуха Результирующая температура Относительная влажность %
опти мальная допустимая оптималь ная допустимая Оптимальная допустимая
20-22 18-24 19-20 17-23 45-30
19-21 18-23 18-20 17-22 45-30
20-2 19-23 19-20 19-22 45-30
14-16 12-17 13-15 13-16 45-30
18-20 16-22 17-20 15-21 45-30

Для общественных зданий вводится понятие обслуживающая зонапомещения (зона обитания ). Это пространство в помещении, ограниченное плоскостями, параллельными полу и стенам; на высоте 0,1 и 2,0 м над уровнем пола (но не ближе чем 1 м от потолка при потолочном отоплении), на расстоянии 0,5 м от внутренней поверхности наружных и внутренних стен, окон и отопительных приборов.

Для промышленных зданий принят СанПин 2.2.548-96 «Гигиенические требования к микроклимату производственных помещений». В данном документе кроме параметров внутреннего воздуха нормируются также температуры поверхностей и допустимые величины интенсивности теплового облучения поверхности тела работниковна рабочихместах от производственных источников, приведенные в таблице1. 3

Таблица 1.3

Интенсивности теплового облучения поверхности тела работников

на рабочих местах

Под производственным помещением понимается замкнутое пространство в специально предназначенных зданиях и сооружения, в которых (по сменам) или периодически (в течение рабочего дня) осуществляется трудовая деятельность людей

Рабочее место – участок помещения, на котором в течение рабочей смены или части ее осуществляется трудовая деятельность. Рабочим местом может являться несколько участков производственного помещения. Если эти участки расположены по всему помещению, рабочим местом считается вся площадь помещения.

Оптимальные условия микроклимата на рабочих местах в данном документе нормируются от времени года и от категории работ , различающихся по уровню энергозатрат организма. При учете интенсивности труда все виды работ делятся на три категории: легкие, средней тяжести и тяжелые.

К легким , с затратой энергии до 175 Вт, относятся работы, выполняемые сидя или стоя, не требующие систематического физического напряжения (процессы точного приборостроения, конторские работы и др.).

К категории работ средней тяжести относятся работы с затратой энергии 175-290 Вт, связанные с постоянной ходьбой, переносом тяжестей до 10 кг (механосбороч­ные цеха, обработка древесины, текстильное производство и др.).

К категории тяжелых работ, с затратой энергии более 290 Вт, относятся работы с систематическим физиче­ским напряжением, перемещением и переноской значительных (свыше 10 кг) тяжестей (кузнечные, литейные цеха с ручными процессами и др.).

Под оптимальными микроклиматическими условиями понимают условия установленные по критериям оптимального теплового и функционального состояния человека. Они обеспечивают общее и локальное ощущение теплового комфорта в течение 8-часой рабочей смены при минимальном напряжении механизмов терморегуляции, не вызывают отклонений в состоянии здоровья, работоспособности и являются предпочтительными на рабочих местах. Оптимальные показатели микроклимата необходимо соблюдать для работы операторского типа, связанной с нервно-эмоциональными напряжениями. Значения приводятся в таблице 1.4.

Таблица1.4

Оптимальные показатели микроклимата

Период года Температура воздуха, °С Скорость движения воздуха, м/с
Холодный Iа (до 139) 22-24 21-25 60-40 0,1
Iб (140-174) 21-23 20-24 60-40 0,1
IIа (175-232) 19-21 18-22 60-40 0,2
IIб (233-290) 17-19 16-20 60-40 0,2
III (более 290) 16-18 15-19 60-40 0,3
Теплый Iа (до 139) 23-25 22-26 60-40 0,1
Iб (140-174) 22-24 21-25 60-40 0,1
IIа (175-232) 20-22 19-23 60-40 0,2
IIб (233-290) 19-21 18-22 60-40 0,2
III (более 290) 18-20 17-21 60-40 0,3

Допустимые величины показателей микроклимата устанавливаются в случаях, когда по технологическим требованиям и экономически обоснованным причинам не могут быть обеспечены оптимальные величины. Значения допустимых величин показателей микроклимата на производственных местах приведены в таблице 1.5

Таблица 1.5

Допустимые величины показателей микроклимата

Период года Категория работ по уровню энергозатрат, Вт Температура воздуха, °С Температура поверхностей, °С Относительная влажность воздуха, %
диапазон ниже оптимальных величин диапазон выше оптимальных величин
Холодный Iа (до 139) 20,0-21,9 24,1-25,0 19,0-26,0 15-75*
Iб (140-174) 19,0-20,9 23,1-24,0 18,0-25,0 15-75
IIа (175-232) 17,0-18,9 21,1-23,0 16,0-24,0 15-75
IIб (233-290) 15,0-16,9 19,1-22,0 14,0-23,0 15-75
III (более 290) 13,0-15,9 18,1-21,0 12,0-22,0 15-75
Теплый Iа (до 139) 21,0-22,9 25,1-28,0 20,0-29,0 15-75*
Iб (140-174) 20,0-21,9 24,1-28,0 19,0-29,0 15-75*
IIа (175-232) 18,0-19,9 22,1-27,0 17,0-28,0 15-75*
IIб (233-290) 16,0-18,9 21,1-27,0 15,0-28,0 15-75*
III (более 290) 15,0-17,9 20,1-26,0 14,0-27,0 15-75*

Для расчета микроклимата у промышленных зданий время года подразделяется на два периода:

Холодный период, со среднесуточной температурой наружного воздуха ниже +10 ºС,

теплый период, со среднесуточной температурой наружного воздуха выше +10 ºС.

Первое условие комфортности определяет такое сочетание температуры внутреннего воздуха и радиационной температуры помещения , когда человек, находясь в центре рабочей зоны, не испытывает ни перегрева, ни переохлаждения.

Таким образом, при выполнении первого условия комфортности нормируется температура внутреннего воздуха и радиационная температура помещения . Остальные параметры внутреннего воздуха и индивидуальные характеристики человека не учитываются. По своему логическому содержанию первое условие комфортности является энергетическим балансом организма человека и окружающей среды, и определяет такие сочетания параметров окружающей среды, при которых количество тепловой энергии, вырабатываемой организмом, равно количеству теплоты отдаваемой в окружающую среду.

Второе условие комфортности определяет допустимые температуры нагретых и охлажденных поверхностей при нахождении человека в непосредственной близости от них.

С математической точки зрения, второе условие комфортности определяет границы изменения переменных, входящих в первое условие комфортности. Действительно, не все сочетания параметров окружающего воздуха, удовлетворяющие первому условию комфортности, являются комфортными для человека. Например, можно подобрать температуру внутреннего воздуха и радиационную температуру помещения, при которых организм человека будет находиться в тепловом балансе с окружающей средой, но большие значения радиационной температуры будут вызывать дискомфорт и перегрев отдельных участков тела.

Третье условие комфортности : параметры внутреннего микроклимата должны иметь возможность индивидуального регулирования с целью соответствия субъективным ощущением комфорта потребителя.

2. ПАРАМЕТРЫ ВНУТРЕННЕГО МИКРОКЛИМАТА ПОМЕЩЕНИЙ

Рассмотрим подробнее параметры микроклимата для общественных и производственных зданий, которые нормируются в ГОСТ 30494- 96 и СанПин 2.2.548-96.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

КАМЕНСК-УРАЛЬСКИЙ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ

СПЕЦИАЛЬНОСТЬ 140613

«ТЕХНИЧЕСКАЯ ЭКСПЛУАТАЦИЯ И ОБСЛУЖИВАНИЕ ЭЛЕКТРИЧЕСКОГО И ЭЛЕКТРОМЕХАНИЧЕСКОГО ОБОРУДОВАНИЯ»

ГРУППА Э06-31

Реферат на тему:

«МИКРОКЛИМАТ ПОМЕЩЕНИЙ»

ОБЕСПЕЧЕНИЕ КОМФОРТНЫХ УСЛОВИЙ ДЛЯ ТРУДОВОЙ ДЕЯТЕЛЬНОСТИ

Обеспечение комфортных условий для трудовой деятельности позволяет повысить качество и производительность труда, обеспечить хорошее самочувствие и наилучшие для сохранения здоровья параметры среды обитания и характеристики трудового процесса.

Создание комфортных условий предусматривает обеспечение многих параметров среды обитания и характеристик трудового процесса на оптимальном уровне: не превышение допустимых уровней негативных факторов и их снижение до минимально возможных уровней, рациональный режим труда и отдыха, удобство рабочего места, хороший психологический климат в трудовом коллективе и т. д.

Однако одними из наиболее значимых для обеспечения комфортных условий на рабочем месте являются климатические условия, освещенность и световая среда.

МИКРОКЛИМАТ ПОМЕЩЕНИЙ

Механизмы теплообмена между человеком и окружающей средой.

Человек постоянно находится в состоянии обмена теплотой с окружающей средой. Наилучшее тепловое самочувствие человека будет тогда, когда тепловыделения организма человека полностью отдаются окружающей среде, т. е. имеет место тепловой баланс. Превышение тепловыделения организма над теплоотдачей в окружающую среду приводит к нагреву организма и к повышению его температуры -- человеку становится жарко. Наоборот, превышение теплоотдачи над тепловыделением приводит к охлаждению организма и к снижению его температуры -- человеку становится холодно.

Средняя температура тела человека -- 36,5 °С. Даже незначительные отклонения от этой температуры в ту или другую сторону приводят к ухудшению самочувствия человека.

Тепловыделения организма определяются прежде всего тяжестью и напряженностью выполняемой человеком работы, в основном величиной мышечной нагрузки.

Параметрами микроклимата, при которых выполняет работу человек и от которых зависит теплообмен между организмом человека и окружающей средой, являются температура окружающей среды, скорость движения воздуха и влажность (относительная) воздуха.

Чтобы понять, почему именно эти параметры определяют теплообмен человека с окружающей средой, рассмотрим механизмы, за счет которых теплота передается от одного предмета к другому (в частности, от человека к окружающей его среде и наоборот). Передача теплоты от че-ловека к окружающей среде и наоборот осуществляется за счет тепло-проводности, конвективного теплообмена, излучения, испарения и с выдыхаемым воздухом.

Передача теплоты осуществляется за счет теплопроводности.

Теплота может передаваться только от тела с более высокой температурой к телу с менее высокой температурой. Интенсивность отдачи теплоты зависит от разности температур тел (в нашем случае -- это температура тела человека и температура окружающих человека предметов и воздуха) и теплоизолирующих свойств одежды.

Т. к. температура тела человека относительно величины 36,5 °С варьируется в небольшом диапазоне, то изменение отдачи теплоты от человека происходит в основном за счет изменения температуры окружающей человека среды.

Если температура воздуха или окружающих человека предметов выше температуры 36,5 "С, происходит не отдача теплоты от человека, а наоборот его нагрев. Поэтому при нахождении человека у нагревательных приборов или горячего производственного оборудования теплота от них передается человеку, и происходит нагрев тела.

Одежда человека обладает теплоизолирующими свойствами: чем более теплая одежда, тем меньше теплоты отдается от человека окружающей среде.

Передача теплоты осуществляется также за счет конвективного теплообмена. Воздух, находящийся вблизи теплого предмета, нагревается. Нагретый воздух имеет меньшую плотность и, как более легкий, поднимается вверх, а его место занимает более холодный воздух окружающей среды.

Явление обмена порций воздуха за счет разности плотностей теплого и холодного воздуха называется естественной конвекцией.

Если теплый предмет обдувать холодным воздухом, то процесс замены более теплых слоев воздуха у предмета на более холодные ускоряется. В этом случае у нагретого предмета будет находиться более холодный воздух, разность температур между нагретым предметом и окружающим воздухом будет больше, и, как мы уже выяснили раньше, интенсивность отдачи тепла от предмета окружающему воздуху возрастет. Это явление называется вынужденной конвекцией.

Еще одним механизмом передачи теплоты от человека окружающей среде является испарение. Если человек потеет, на его коже появляются капельки воды, которые испаряются, и вода из жидкого состояния переходит в парообразное. Этот процесс сопровождается затратами энергии на испарение и в результате охлаждением организма.

Для каждой температуры воздуха характерно максимальное количество воды, которое может находиться в единице объема воздуха в парообразном состоянии.

Обычно влажность воздуха измеряют величиной относительной влажности, выраженной в процентах. Например, относительная влажность 70 % означает, что в воздухе воды в парообразном состоянии находится 70 % от максимально возможного количества. Относительная влажность 100 % означает, что воздух насыщен водяными парами и в такой среде испарение происходить не может.

Таким образом, относительная влажность -- это отношение массы водяного пара, содержащегося в единице объема воздуха, к массе водяного пара, содержащегося в насыщенном водяными парами воздухе (предельной массе водяного пара, которая может содержаться в воздухе при данной температуре).

Интенсивность испарения возрастает при увеличении скорости движения воздуха. Это объясняется теми же причинами, что и увеличение теплообмена при вынужденной конвекции. Слои воздуха, находящиеся вблизи тела человека и насыщенные водяными парами, за счет движения воздуха удаляются и заменяются более сухими порциями воздуха, при этом возрастает интенсивность испарения.

Следующим механизмом отдачи теплоты от человека окружающей среде является теплота выдыхаемого воздуха. В процессе дыхания воздух окружающей среды, попадая в легкие человека, нагревается и одновременно насыщается водяными парами. Таким образом, теплота выводится из организма человека с выдыхаемым воздухом.

Последним механизмом теплообмена между человеком и окружающими предметами является излучение. Тепловая энергия, превращаясь на поверхности горячего тела в лучистую (электромагнитную волну) -- инфракрасное излучение, передается на другую -- холодную -- поверхность, где вновь превращается в тепловую. Лучистый поток тем больше, чем больше разница температур человека и окружающих предметов. Причем лучистый поток может исходить от человека, если температура окружающих предметов ниже температуры человека и наоборот, если окружающие предметы более нагреты. Направление тепловых потоков может быть от человека к окружающим человека воздуху и предметам и наоборот, в зависимости от того, что выше -- температура тела человека или окружающего воздуха и окружающих его.

Климат и здоровье человека

Параметры климата оказывают существенное влияние на самочувствие, состояние здоровья и работоспособность человека. Наилучшие условия -- когда выделение теплоты человеком равняется ее отводу от человека, т. е. при наличии теплового баланса. Такие условия называются комфортными, а параметры микроклимата оптимальными.

Влияние климатических условий на самочувствие человека. Откло-нение параметров климата (температуры, относительной влажности и скорости движения воздуха) от комфортных приводит к нарушению теплового баланса. Так, например, понижение температуры окружающего воздуха приводит к повышению разности температур между телом человека и окружающей средой, а следовательно, к увеличению теплоотдачи от организма за счет теплопроводности, конвекции и излучения. Человек начинает испытывать недостаток тепла, ему становится холодно. Слишком сильное понижение температуры может привести к чрезмерному переохлаждению организма. Повышение скорости движения воздуха также увеличивает теплоотдачу от организма и может привести к его переохлаждению за счет возрастания отдачи тепла конвекцией и при испарении пота. При переохлаждении организма уменьшается функциональная деятельность органов человека, скорость биохимических процессов, снижается внимание, затормаживается умственная деятельность и, в конечном счете, снижается активность и работоспособность человека.

При повышении температуры могут иметь место обратные явления ~ тепловыделения человека начинают превышать теплоотдачу и может возникать перегрев организма. При этом также ухудшается самочувствие человека и падает его работоспособность. Переносимость человеком повышенной температуры и его ощущения в значительной мере зависят от влажности и скорости движения окружающего воздуха. Чем больше влажность, тем меньше испаряется пота, и, следовательно, уменьшается теплоотдача от организма за счет испарения. При температуре окружающего воздуха свыше 30 °С теплоотдача от организма за счет конвекции и излучения незначительна, а при температуре окружающей среды равной температуре тела человека (36,5 °С) отсутствует вовсе.

При температуре окружающей среды большей температуры тела человека тепловой поток за счет конвекции и излучения наоборот направлен от окружающей среды к телу человека. Поэтому в таких условиях практически все выделяемое организмом тепло отдается окружающей среде при испарении пота. При высокой влажности пот не испаряется, а стекает каплями с поверхности кожного покрова, имеет место так называемое «проливное» течение пота. Высокая температура в сочетании с высокой влажностью оказывает изнуряющее воздействие на организм, т. к. в таких условиях не обеспечивается даже минимально необходимая теплоотдача от организма. Наблюдается интенсивный перегрев организма, человек не способен выполнять не только тяжелую физическую, но даже в течение длительного времени легкую работу. Эффективность всех видов умственного труда также резко снижается.

Не только избыточная влажность, но и недостаточная влажность отрицательно действует на организм человека. При небольшой влажности и особенно при высокой температуре окружающего воздуха из-за интенсивного испарения влаги со слизистых оболочек наблюдается их пересыхание, растрескивание, а затем и загрязнение болезнетворными микроорганизмами. С потом из организма человека выводятся вода и соли, их потеря ведет к сгущению крови и нарушению деятельности сердечно-сосудистой системы. Обезвоживание организма влечет за собой нарушение умственной деятельности, снижение остроты зрения. Сильное обезвоживание (на 15...20 %) может привести к смертельному исходу. При высокой температуре и недостатке воды в организме усиленно расходуются углеводы, жиры, разрушаются белки.

Длительное воздействие высокой температуры, особенно в сочетании с повышенной влажностью воздуха, может привести к перегреванию организма выше допустимого предела -- гипертермии -- состоянии, при котором температура тела поднимается до 38 °С и выше. Следствием гипертермии может являться тепловой удар, при этом наблюдается головная боль, общая слабость, головокружение, тошнота, рвота, пульс и дыхание учащаются, появляется бледность, синюшность, расширяются зрачки, могут появляться судороги и произойти потеря сознания.

Длительное воздействие низкой температуры, особенно в сочетании с повышенной скоростью движения воздуха (ветром), может привести к переохлаждению организма ниже допустимого предела -- гипотермии. При продолжительном действии холода дыхание становится неритмичным, частота и объем вдоха увеличиваются, нарушается обмен веществ. Так, при интенсивном охлаждении интенсивность углеводных обменных процессов может возрасти в 3 раза в сравнении с уровнем основного обмена. Появляется мышечная дрожь, при которой никакой работы не совершается, а вся энергия превращается в теплоту. Это есть реакция организма, пытающегося увеличить интенсивность тепловыделений в организме и предотвратить снижение температуры внутренних органов. Однако при продолжении действия холода могут возникнуть холодовые травмы и даже наступить смерть.

Кроме температуры, влажности и скорости движения воздуха на самочувствие человека оказывает влияние такой климатический параметр, как барометрическое давление воздушной среды. Особенно чувствительны к изменению давления люди с заболеваниями сердечно-сосудистой системы и гипертонией. От давления существенным образом зависит дыхание человека, а точнее, поступление кислорода в организм человека. Основным элементом легких является большое число легочных пузырей -- альвеол, стенки которых пронизаны сетью очень мелких (капиллярных) кровеносных сосудов.

Общая поверхность альвеол взрослого человека достигает 100... 150 м2. Кислород поступает в кровь, проникая через стенки альвеол за счет процесса диффузии. Интенсивность проникновения кислорода из альвеол в кровь (диффузии) определяется парциальным давлением кислорода в воздухе. Воздух состоит из смеси газов -- азота, кислорода, углекислого газа, инертных газов и др. Давление, которое имел бы каждый из газов, составляющих воздух, если бы удалить остальные газы из объема, занимаемого воздухом, называют парциальным. Общее давление воздуха складывается из парциальных давлений отдельных составляющих воздух газовых компонент. Поэтому, если из воздуха удалить все газы, кроме кислорода, находящегося в нем, то- давление будет равно парциальному давлению кислорода. Наиболее интенсивно диффузия кислорода из альвеол в кровь происходит при парциальном давлении кислорода 100...120 мм рт. ст. (1 мм рт. ст. примерно равен 9,8 Па). При парциальном давлении кислорода ниже этих пределов снижается проникновение кислорода в кровь, что приводит к затруднению дыхания и увеличению нагрузки на сердечно-сосудистую систему человека.

Изменение давления за счет климатических условий невелико, поэтому здоровые люди не наблюдают каких-либо заметных изменений в своем самочувствии. Однако с изменением высоты атмосферное давление, а следовательно, и парциальное давление кислорода меняется весьма существенно. Это особенно заметно при подъеме в горах. Так, на высоте 3 км парциальное давление кислорода равно примерно 70 мм рт. ст., на высоте 4 км -- 60 мм рт. ст. При недостаточном парциальном давлении кислорода наступает кислородное голодание -- гипоксия. При гипоксии появляется головная боль, головокружение, замедленная реакция, нарушение нормальной работы органов слуха и зрения, нарушение обмена веществ. К таким условиям человек может адаптироваться (приспособиться) за счет постепенной акклиматизации к длительному пребыванию на различных высотах. Известно расположение населенных пунктов на высоте около 4 км. На больших высотах длительное пребывание затруднено. Здоровые, тренированные люди (например, альпинисты) могут переносить пребывание на больших высотах, однако и для них это экстремальные условия, и их работоспособность при этом снижается. Известны случаи подъема альпинистов (в том числе отечественных) на высочайшую вершину мира Джомолунгму (г. Эверест -- 8848 м) без использования кислородных масок. С гипоксией человек может встретиться не только в горах на больших высотах, но и при полете на самолете при разгерметизации кабины. Как правило, на производстве давление воздушной среды может лишь незначительно отличаться от давления окружающей среды. Однако для ряда профессий давление воздушной среды является исключительно важным не только для самочувствия человека, но и для его жизни -- например, летчиков и водолазов.

Терморегуляция организма человека

Метеорологические параметры, такие как температура, скорость движения воздуха и относительная влажность определяют теплообмен человека с окружающей средой и, следовательно, самочувствие человека. Совокупность указанных параметров называется микроклиматом. Параметры микроклимата в природной среде и в производственных условиях могут изменяться в широких пределах. Так, на уровне моря отмечено изменение температуры от -88 до +60 "С; скорости движения воздуха -- от 0 до 100 м/с и даже более; относительной влажности -- от 10 до 100 % и барометрического давления - от 680 до 810 мм рт. ст. (90...108 кПа). Как уже было показано ранее, в определенном диапазоне параметров микроклимата имеет место тепловой баланс между тепловыделениями в организме человека и отдачей теплоты в окружающую среду. В условиях теплового баланса имеет место комфортное тепловое самочувствие человека, при которой нагрузка на системы организма человека, поддерживающие его нормальную температуру, минимальна.

Нарушения теплового баланса в ту или иную сторону вызывают в организме человека реакцию, способствующую восстановлению баланса. Процессы регулирования тепловыделений для поддержания нормальной (36,5 °С) температуры человека называются терморегуляцией. Терморегуляция осуществляется биохимическим путем, изменением интенсивности кровообращения и потоотделения. При этом в регулировании процесса теплообмена участвуют в большей или меньшей степени все виды терморегуляции, но одновременно.

Терморегуляция биохимическим путем состоит в изменении интенсивности окислительных процессов, происходящих в организме человека. Внешним проявлением биохимических регулирующих процессов является мышечная дрожь, которая, как уже говорилось, возникает при переохлаждении организма и повышает тепловыделения в организме.

Терморегуляция изменением интенсивности кровообращения заключается в способности организма регулировать объем подаваемой крови, которую в данном случае можно рассматривать как переносчик тепла от внутренних органов к поверхности тела человека. Регулирование объема тока крови осуществляется в организме за счет сужения или расширения кровеносных сосудов. При высокой температуре окружающей среды кровеносные сосуды кожи расширяются, и к ней от внутренних органов притекает больше крови, в результате большее ее количество отдается от внутренних органов коже, температура кожи повышается, и частично или полностью восстанавливается интенсивность отдачи тепла за счет теплопроводности, конвекции и излучения. При низкой температуре происходит обратное явление: кровеносные сосуды сужаются, количество крови, а следовательно и теплоты, подаваемой к коже, уменьшается, снижается ее температура, и, как следствие, отдача тепла от человека окружающей среде. Кровоснабжение может изменяться в 30 раз, а в пальцах даже в 600 раз.

Терморегуляция изменением интенсивности выделения пота заключается в изменении теплоотдачи за счет испарения. Испарительное охлаждение организма может иметь большое значение. Так, при температуре окружающей среды 36 °С отвод тепла от человека в окружающую среду осуществляется практически только за счет испарения пота.

В определенном диапазоне параметров окружающей среды система терморегуляции человека способна поддерживать тепловой баланс.

Условия воздушной среды, которые обусловливают оптимальный обмен веществ в организме человека и при которых отсутствуют неприятные ощущения и напряженность системы терморегуляции, называют комфортными (оптимальными) условиями. Зона, в которой окружающая среда полностью отводит теплоту, выделяемую организмом человека и отсутствует напряжение системы терморегуляции, называется зоной комфорта.

Условия, при которых нормальное тепловое состояние человека нарушается, называется дискомфортным. При небольшой напряженности системы терморегуляции устанавливаются условия небольшой дискомфортности. Условия небольшой дискомфортности определяются допустимыми значениями метеорологических параметров. При превышении допустимых значений метеорологических параметров система терморегуляции работает в напряженном режиме, человек испытывает сильный дискомфорт, нарушается тепловой баланс, и начинается перегрев или переохлаждение организма в зависимости от того, в какую сторону нарушен тепловой баланс.

Гигиеническое нормирование параметров микроклимата

Гигиеническое нормирование параметров производственного микроклимата установлено системой стандартов безопасности труда (ГОСТ 12.1.005-88, а также СанПиН 2.2.4.584-96).

Нормируются оптимальные и допустимые параметры микроклимата -- температура, относительная влажность и скорость движения воздуха. Значения параметров микроклимата устанавливаются в зависимости от способности человеческого организма к акклиматизации в разное время года и категории работ по уровню энергозатрат.

От периода года зависит способность организма к акклиматизации, следовательно, и значения оптимальных и допустимых параметров. При нормировании различают теплый и холодный период года.

Теплый период года характеризуется среднесуточной температурой наружного воздуха выше +10 °С; холодный период года -- равной +10 °С и ниже.

При нормировании параметров микроклимата категорирование работ по тяжести выполнено разграничением на основе общих затрат энергии организмом в единицу времени, которое измеряется в ваттах.

Различаются следующие категории работ:

*легкие физические работы (категории 1а и 16) -- все виды деятельности с расходом энергии не более 174 Вт. К категории la (до 139 Вт) относятся работы, производимые сидя и сопровождающиеся незначительным физическим напряжением -- ряд профессий на предприятиях точного приборо- и машиностроения, на часовом, швейном производстве, в сфере управления и т. п. К категории 16 (140...174 Вт) относятся работы, производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением, -- ряд профессий в полиграфической промышленности, на предприятиях связи, контролеры, мастера в различных видах производства и т. п.;

*физические работы средней тяжестии (категории На, Пб) -- виды деятельности с расходом энергии 175...290 Вт. К категории Па (175...232 Вт) относятся работы, связанные с постоянной ходьбой и перемещением мелких (до 1 кг) изделий, -- ряд профессий в механосборочных цехах, прядильно-ткацком производстве и т. п. К категории Пб (233...290 Вт) относятся работы, связанные с ходьбой, перемещением тяжестей до 10 кг, -- ряд профессий в механизированных литейных, прокатных, кузнечных, сварочных цехах и т. п.;

*тяжелые физические работы (категория III) -- виды деятельности с расходом энергии более 290 Вт -- работы, связанные с систематическим физическим напряжением, в частности с постояннным передвижением и переноской значительных (свыше 10 кг) тяжестей (ряд профессий в кузнечных, литейных цехах с ручным трудом и т. п.).

Методы обеспечения комфортных климатических условий в помещениях

Для обеспечения комфортных условий необходимо поддерживать тепловой баланс между выделениями теплоты организмом человека и отдачей тепла окружающей среде. Обеспечить тепловой баланс можно, регулируя значения параметров микроклимата в помещении (температуры, относительной влажности и скорости движения воздуха). Поддержание указанных параметров на уровне оптимальных значений обеспечивает комфортные климатические условия для человека, а на уровне допустимых -- предельно допустимые, при которых система терморегуляции организма человека обеспечивает тепловой баланс и не допускает перегрева или переохлаждения организма.

Основным методом обеспечения требуемых параметров микроклимата и состава воздушной среды является применение систем вентиляции, отопления и кондиционирования воздуха.

Хорошая вентиляция помещения способствует улучшению самочувствия человека. Наоборот, плохая вентиляция приводит к повышенной утомляемости, снижению работоспособности. В жилых, общественных и производственных помещениях в результате жизнедеятельности людей, работы оборудования, приготовления пищи, сгорания природного газа выделяются вредные вещества, влага, теплота. В результате ухудшаются климатические условия, изменяется состав воздушной среды. Поэтому обеспечение хорошей вентиляции, регулярное проветривание помещений, является необходимым условием для обеспечения оптимальных условий для труда человека и сохранения его здоровья.

Наибольшее распространение для обеспечения оптимальных параметров микроклимата получила общеобменная приточно-вытяжная вентиляция. Применяется как механическая, так и естественная вентиляция.

Если в помещении возможно естественное проветривание, а объем помещения, приходящегося на одного человека, не менее 20 м3, производительность вентиляции должна быть не менее 20 м3/ч на одного человека. Если же объем помещения, приходящегося на одного человека менее 20 м3, производительность вентиляции должна быть не менее 30 м3/ч. При невозможности естественного проветривания производительность вентиляции должна быть не менее 60 м3/ч на одного человека.

При выделении в помещении от оборудования и технологических процессов влаги и теплоты производительность вентиляции должна быть увеличена по сравнению с указанными величинами. Необходимая производительность определяется расчетом с учетом количества выделяемой влаги и теплоты.

В жаркое время года, а также в горячих цехах на рабочих местах, подвергаемых интенсивному воздействию тепловых потоков от печей, раскаленных отливок и других источников тепла, дополнительно применяют воздушное душирование, заключающееся в обдуве ра-ботающего потоком воздуха с целью увеличения интенсивности конвективного теплообмена и отвода теплоты за счет испарения.

Скорость обдува составляет 1 ...3,5 м/с в зависимости от интенсивности теплового потока. Установки воздушного душирования бывают стационарные, когда воздух на рабочее место подается по системе воздуховодов с приточными насадками, и передвижные, в которых используется передвижной вентилятор. Примером передвижного устройства воздушного душирования является бытовой вентилятор, применяемый в жилых и непроизводственных помещениях в жаркую погоду, когда естественная вентиляция не может обеспечить тепловой баланс между человеком и окружающей средой. Воздушные оазисы позволяют улучшить метеорологические условия на ограниченном участке помещения, для чего этот участок со всех сторон отделяется перегородками и заполняется воздухом более прохладным и чистым, чем воздух в остальном помещении. Воздушные и воздушно-тепловые завесы устраивают для защиты людей от охлаждения проникающим через ворота или двери холодным воздухом. Завесы бывают двух типов: воздушные с подачей воздуха без подогрева и воздушно-тепловые с подогревом подаваемого воздуха в калориферах. Воздух для завесы подается к дверным проемам через специальную щель и выходит с большой скоростью (10...15 м/с) под углом навстречу поступающему снаружи холодному воздуху. Воздух завесы препятствует поступлению холодного воздуха в помещение; проникшая же в помещение часть холодного воздуха подогревается при смешении с более теплым воздухом завесы. Бывают завесы с нижней и боковой подачей воздуха. Примером воздушных завес являются применяемые в холодный период года во входных дверях магазинов, метро, учреждений воздушно-тепловые завесы. Для создания оптимальных метеорологических условий в помещениях применяют кондиционирование воздуха. Кондиционированием воздуха называется автоматическое поддержание в помещениях заданных оптимальных параметров микроклимата и чистоты воздуха независимо от изменения наружных условий и режимов внутри помещения. При кондиционировании может автоматически регулироваться температура воздуха, его относительная влажность и скорость подачи в помещение. Создание таких параметров воздуха осуществляется в специальных установках и устройствах, называемых кондиционерами. Кондиционеры бывают местными -- для обслуживания отдельных помещений, комнат, и центральными -- для обслуживания групп помещений, цехов и производств в целом. Сложность кондиционера определяется числом и точностью поддерживаемых в заданном диапазоне параметров. Простейшими кондиционерами являются бытовые кондиционеры, которые можно увидеть встроенными в окна и закрепленными с наружной стороны стен помещений. В холодное время года для поддержания в помещении оптимальной температуры воздуха применяется отопление. Отопление может быть водяным, паровым, электрическим.

1.Безопасность жизнедеятельности. Производственная безопасность и охрана труда: Учебные пособия для студентов средних профессиональных учебных заведений П.П.Кукин, В.Л.Лалин, Н.Л.Пономарёв, и др. Высшая школа 2001-431 с.

2.Безопасность жизнедеятельности. Учебник для студентов средних профессиональных учебных заведений С.В.Белов, В.А.Девисилов, А.Ф.Козьяков и др.; под общ. ред. С.В.Белова-М: Высшая школа, 2002-357 с.

3.Девисилов В.А Охрана труда: Учебник для студентов средних профессиональных заведений - М: Форум - Инфра - М, 2002-200 с.

Подобные документы

    Влияние параметров микроклимата на самочувствие человека. Гигиеническое нормирование параметров микроклимата. Средства обеспечения надлежащей чистоты и допустимых параметров микроклимата рабочей зоны. Требования к освещению помещений и рабочих мест.

    презентация , добавлен 24.06.2015

    Гигиенические нормативы условий труда. Периоды изменения работоспособности в течение рабочей смены. Классификация условий труда. Меры, направленные на профилактику вредного и опасного действия факторов рабочей среды и трудового процесса на работников.

    лекция , добавлен 12.02.2014

    Краткое описание работы и должности менеджера по продаже стройматериалов. Расчет тяжести и напряженности трудового процесса. Составление протокола оценки условий труда по показателям тяжести трудового процесса. Оценка и анализ полученных результатов.

    контрольная работа , добавлен 11.03.2011

    Способы очистки вредных выбросов. Обеспечение комфортных условий жизнедеятельности. Качество воздушной среды и микроклимат помещений. Расчет искусственного освещения методом коэффициента использования светового потока. Электромагнитные поля и излучения.

    контрольная работа , добавлен 19.06.2012

    Параметры микроклимата и их измерение. Терморегуляция организма человека. Влияние параметров микроклимата на самочувствие человека. Гигиеническое нормирование параметров микроклимата. Обеспечение в помещениях нормальных метеорологических условий.

    контрольная работа , добавлен 23.06.2013

    Воздействие физического труда на организм человека. Оценка тяжести труда в рамках аттестации рабочих мест, его основные показатели. Классы условий труда по показателям тяжести трудового процесса, методика их оценки и средства для измерения показателей.

    презентация , добавлен 13.03.2017

    Вопросы охраны труда и окружающей среды при ведении процесса промышленной водоподготовки. Микроклимат и освещение в помещениях. Вредные физические факторы производственной среды. Производственный шум и вибрация. Электромагнитные поля и излучения.

    отчет по практике , добавлен 13.05.2016

    Влияние отклонений параметров производственного микроклимата от нормативных значений на производительность труда и состояние здоровья. БЖД при устройстве и эксплуатации электрических сетей и электроустановок. Организация рабочего места оператора ПЭВМ.

    реферат , добавлен 11.01.2008

    Классы условий труда, оценка условий труда по показателям напряженности трудового процесса. Комплекс производственных факторов (стимулов, раздражителей как предпосылка для возникновения неблагоприятных нервно-эмоциональных состояний (перенапряжения).

    контрольная работа , добавлен 14.07.2010

    Описание типового проекта детского комбината. Характеристика служебно-бытовых помещений. Гигиеническая оценка сетки занятий детей. Микроклимат помещений и световой режим. Гигиеническая оценка режима дня. Комплексная оценка состояния здоровья ребенка.

  • Анализ технических требований чертежа, выявление технологических задач и условий изготовления детали
  • Взаимосвязь мероприятий по охране труда и рентабельности работы хозяйственных субъектов. Реальные способы улучшения условий труда и его охраны без конфликтов с работодателями.
  • Одним из необходимых условий нормальной жизнедеятельности человека является обеспечение нормальных метеорологических условий в помещениях. Температура, скорость движения воздуха, относительная влажность и атмосферное давление окружающего воздуха получили название параметров микроклимата. Параметры микроклимата оказывают непосредственное влияние на тепловое самочувствие человека и его работоспособность. При температуре воздуха более 30 0 С работоспособность человека начинает падать. Недостаточная влажность воздуха также может оказаться неблагоприятной для человека вследствие интенсивного испарения влаги со слизистых оболочек, их пересыхания и растрескивания, а затем и загрязнения болезнетворными микроорганизмами. Считается допустимым для человека снижение его массы на 2…3 % путем испарения влаги – обезвоживание организма. Обезвоживание на 6 % влечет за собой нарушение умственной деятельности, снижение остроты зрения; испарение влаги на 15…20 % приводит к смертельному исходу. Вместе с потом организм теряет значительное количество минеральных солей (до 1 %, в том числе 0,4…0,6 NaCl). При неблагоприятных условиях потери жидкости может достигать 8 – 10 л за смену и до 60 г поваренной соли (всего в организме около 140 г NaCl). Потеря соли лишает кровь способности удерживать воду и приводит к нарушению деятельности сердечно-сосудистой системы. При высокой температуре воздуха легко расходуются углеводы, жиры, разрушаются белки.

    Для восстановления водного баланса работающих в горячих цехах устанавливаются пункты подпитки подсоленной (около 0,5 % NaCl) газированной питьевой водой из расчета 4…5 л на человека в смену.

    Длительное воздействие высокой температуры особенно в сочетании с повышенной влажностью может привести к значительному накоплению теплоты в организме и развитию перегревания организма выше допустимого уровня – гипертермии – состоянию, при котором температура тела поднимается до 38…39 0 С. При гипертермии наблюдаются головная боль, общая слабость, искажение цветового восприятия, в крови увеличивается содержание азота и молочной кислоты, временно возникают судороги, потеря сознания. Производственные процессы, выполняемые при пониженной температуре, большой подвижности и влажности воздуха, могут быть причиной переохлаждения организмагипотермии.

    До 270 млн. рабочих дней теряется в Российской Федерации из-за болезней.

    Вместе с изменением параметров микроклимата меняется и тепловое самочувствие человека. Целью нормирования параметров микроклимата является обеспечение терморегуляции организма. Под терморегуляцией понимают совокупность физиологических и химических процессов в организме человека, направленных на поддержание постоянства температуры тела.

    Нормы производственного микроклимата установлены системой стандартов безопасности труда ГОСТ 12.1.005.-88 (1999) «Общие санитарно-гигиенические требования к воздуху рабочей зоны». При нормировании параметров микроклимата учитываются период года, категория тяжести выполняемых работ, постоянство и непостоянство рабочего места.

    Различают теплый и холодный период года. Теплый период года характеризуется среднесуточной температурой наружного воздуха +10 0 С и выше, холодный – ниже +10 0 С.

    При учете интенсивности труда все виды работ, исходя из общих энергозатрат организма, делятся на три категории: легкие, средней тяжести и тяжелые.

    В рабочей зоне производственного помещения согласно ГОСТ 12.1.005-88 (1999) могут быть установлены оптимальные и допустимые микроклиматические условия.

    Оптимальные микроклиматические условия – это такое сочетание параметров микроклимата, которое при длительном и систематическом воздействии на человека обеспечивает общее и локальное ощущение теплового комфорта в течение 8-часовой рабочей смены.

    Допустимые микроклиматические условия это такие сочетания параметров микроклимата, которые при длительном и систематическом воздействии на человека могут вызвать напряжение реакций терморегуляции и которые не выходят за пределы физиологических приспособительных возможностей человека.

    Для измерения параметров микроклимата используются приборы: термометры, психрометры, гигрометры, анемометры, актинометры, пирометры и другие.

    К основным мероприятиям для обеспечения норм параметров микроклимата относятся:

    Технологические мероприятия: замена старых и внедрение новых технологических процессов и оборудования, внедрение автоматизации и механизации;

    Санитарно-технические мероприятия: теплоизоляция горячих поверхностей, экранирование источников тепла либо рабочих мест, мелкодисперсное распыление воды, общеобменная вентиляция или кондиционирование воздуха;

    Для обеспечения комфортных условий необходимо поддерживать тепловой батане между выделениями теплоты организмом человека и отдачей тепла окружающей среде. Обеспечить тепловой баланс можно, регулируя значения параметров микроклимата в помещении (температуры, относительной влажности и скорости движения воздуха). Поддержание указанных параметров на уровне оптимальных значений обеспечивает комфортные климатические условия для человека, а на уровне допустимых - предельно допустимые, при которых система терморегуляции организма человека обеспечивает тепловой баланс и не допускает перегрева или переохлаждения организма.

    Основным методом обеспечения требуемых параметров микроклимата и состава воздушной среды является применение системвентиляции, отопления и кондиционирования воздуха.

    Хорошая вентиляция помещения способствует улучшению самочувствия человека. Наоборот, плохая вентиляция приводит к повышенной утомляемости, снижению работоспособности. В жилых, общественных и производственных помещениях в результате жизнедеятельности людей, работы оборудования, приготовления пищи, сгорания природного газа выделяются вредные вещества, влага, теплота. В результате ухудшаются климатические условия, изменяется состав воздушной среды. Поэтому обеспечение хорошей вентиляции, регулярное проветривание помещений, является необходимым условием для обеспечения оптимальных условий для труда человека и сохранения его здоровья.

    Системы вентиляции производственных помещений описаны в разделе 3. Наибольшее распространение для обеспечения оптимальных параметров микроклимата получила общеобменная приточно-вытяжная вентиляция. Применяется как механическая, так и естественная вентиляция.

    Если в помещении возможно естественное проветривание, а объем помещения, приходящегося на одного человека, не менее 20 м\ производительность вентиляции должна быть не менее 20 м"/ч на одного человека. Если же объем помещения, приходящегося на одного человека менее 20 м\ производительность вентиляции должна быть не менее 30 м 3 /ч. При невозможности естественного проветривания производительность вентиляции должна быть не менее 60 м 3 /ч на одного человека.

    При выделении в помещении от оборудования и технологических процессов влаги и теплоты производительность вентиляции должна быть увеличена по сравнению с указанными величинами. Необходимая производительность определяется расчетом с учетом количества выделяемой влаги и теплоты.

    В жаркое время года, а также в горячих цехах на рабочих местах, подвергаемых интенсивному воздействию тепловых потоков от печей, раскаленных отливок и других источников тепла, дополнительно применяют воздушное душирование, заключающееся в обдуве работающего потоком воздуха с целью увеличения интенсивности конвективного теплообмена и отвода теплоты за счет испарения.

    Задача 1. Какова должна быть производительность общеобменной вентиляции класса, в котором обучаются 20 учеников, если размеры помещения класса 15 х 10 х 3м?

    Решение. Класс периодически проветривается. Объем помещения - 450 м 3 . Объем помещения, приходящийся на одного ученика, - 22,5 м 3 . Поэтому минимальная производительность вентиляции должна быть 20м 3 /(ч чел) х 20 чел = 400 м 3 /ч.

    Задача 2. Каков должен быть минимальный диаметр вентиляционного патрубка для осуществления вентиляции с помощью дефлектров в указанном классе? Колледж расположен в Москве.

    Решение. Как было установлено, минимальная производительность вентиляции 400м 3 /ч. Для расчета используем формулу: d= 0,0188 принимая для Москвы 1,7м/с. Тогда d = 0,0188 0,3м = 300мм.

    Скорость обдува составляет 1 ...3,5 м/с в зависимости от интенсивности теплового потока. Установки воздушного душирования бывают стационарные, когда воздух на рабочее место подается по системе воздуховодов с приточными насадками, и передвижные, в которых используется передвижной вентилятор. Примером передвижного устройства воздушного душирования является бытовой вентилятор, применяемый в жилых и непроизводственных помещениях в жаркую погоду, когда естественная вентиляция не может обеспечить тепловой баланс между человеком и окружающей средой.

    Воздушные оазисы позволяют улучшить метеорологические условия на ограниченном участке помещения, для чего этот участок со всех сторон отделяется перегородками и заполняется воздухом более прохладным и чистым, чем воздух в остальном помещении.

    Воздушные и воздушно-тепловые завесы устраивают для защиты людей от охлаждения проникающим через ворота или двери холодным воздухом. Завесы бывают двух типов: воздушные с подачей воздуха без подогрева и воздушно-тепловые с подогревом подаваемого воздуха в калориферах. Воздух для завесы подается к дверным проемам через специальную щель и выходит с большой скоростью (10... 15 м/с) под углом навстречу поступающему снаружи холодному воздуху. Воздух завесы препятствует поступлению холодного воздуха в помещение; проникшая же в помещение часть холодного воздуха подогревается при смешении с более теплым воздухом завесы. Бывают завесы с нижней и боковой подачей воздуха. Примером воздушных завес являются применяемые в холодный период года во входных дверях магазинов, метро, учреждений воздушно-тепловые завесы.

    Для создания оптимальных метеорологических условий в помещениях применяют кондиционирование воздуха. Кондиционированием воздуха называется автоматическое поддержание в помещениях заданных оптимальных параметров микроклимата и чистоты воздуха независимо от изменения наружных условий и режимов внутри помещения. При кондиционировании может автоматически регулироваться температура воздуха, его относительная влажность и скорость подачи в помещение. Создание таких параметров воздуха осуществляется в специальных установках и устройствах, называемых кондиционерами. Кондиционеры бывают местными - для обслуживания отдельных помещений, комнат, и центральными - для обслуживания групп помещений, цехов и производств в целом. Сложность кондиционера определяется числом и точностью поддерживаемых в заданном диапазоне параметров. Простейшими кондиционерами являются бытовые кондиционеры, которые можно увидеть встроенными в окна и закрепленными с наружной стороны стен помещений. На рис. 5.4 показана принципиальная схема устройства кондиционирования воздуха. Воздух поступает в систему кондиционирования снаружи через заборный воздуховод / и, пройдя фильтр 2 очистки поступающего воздуха, поступает в камеру I, где подогревается с помощью калорифера 4; в камере II воздух проходит специальную обработку - орошение водой из форсунок 5 для увлажнения и дополнительной очистки воздуха; в камере III воздух дополнительно подогревается или охлаждается с помощью калорифера или холодильной машины 6, а затем по каналу 9 вентилятором 8 подается в помещение.