Потенциально опасные загрязнители пищевых продуктов. Стимуляторы роста животных

Необходимо помнить, что жизнедеятельность человека неуклонно ведет к загрязнению среды его обитания, из которой мы и получаем продукты питания, следовательно, необходимо разбираться в разнообразии пищевых загрязнителей и стараться не допускать их попадания в окружающую среду. Вредные вещества пищи условно могут быть разделены на две группы. Первая группа – это собственно природные компоненты пищевых продуктов (специфичные именно для определенного вида продукта растительного или животного происхождения), которые при обычном или излишнем использовании могут вызвать негативные реакции организма. Она представлена большим перечнем биологически активных и токсических элементов, которые в свою очередь разделяются на группы, различающиеся по строению и механизму действия. К ним относятся: антивитамины, алкалоиды, вещества, угнетающие усвоение минеральных веществ, алкоголь, цианогенные гликозиды и др. Это вещества, о вредном воздействии которых известно, как правило, заранее (например, о том, что нельзя есть зеленый картофель, так как он содержит соланин). Вторая группа представлена веществами, не свойственными пищевым продуктам, попадающими в пищу из окружающей среды. Как правило, это химические вещества, вносимые в пищу специально для достижения технологического эффекта, или загрязнители пищи химической или биологической природы. Загрязнители пищевых продуктов, попадающие из окружающей среды, представляют наибольшую опасность для здоровья, особенно если речь идет о детях. В свою очередь, истинные загрязнители пищевых продуктов делятся на вещества природного (биологического) и химического происхождения. Биологические загрязнители пищевых продуктов:

  • бактериальные токсины;
  • ботулинические токсины;
  • микотоксины (токсины микроскопических грибов);
  • токсины одноклеточных и многоклеточных водорослей.
Химические загрязнители пищевых продуктов: Степень загрязнения пищевых продуктов напрямую зависит от степени загрязнения окружающей среды. Чужеродные вещества, попадающие в нее в результате жизнедеятельности человека, накапливаются в почве, атмосферном воздухе, воде, а, следовательно, передвигаясь по цепочке, неизбежно попадают в организм человека и вызывают нарушения здоровья. С точки зрения распространения и токсичности наиболее опасными загрязнителями пищевых продуктов являются тяжелые металлы, пестициды и продукты их обмена, радионуклиды, полициклические ароматические углеводороды, нитраты, нитриты.

Нитраты и нитриты

В сельском хозяйстве в качестве высокоэффективных минеральных удобрений широко используются соли азотной кислоты – нитраты натрия, калия, аммония и кальция. Процесс внесения нитратов в почву сопровождается накоплением данных соединений в тканях растений. Нитраты малотоксичны, но они являются предшественниками N-нитрозосоединений, обладающих канцерогенным действием, то есть предрасполагают к развитию онкологических заболеваний. В зерновых культурах и овощах в условиях повышенной влажности, а также в желудочно-кишечном тракте при участии микрофлоры нитраты восстанавливаются в нитриты (соли азотной кислоты). При поступлении нитритов в кровь образуется метгемоглобин, который в отличие от гемоглобина не способен переносить кислород. При концентрации метгемоглобина в крови около 15% (слабая степень отравления) появляется вялость, сонливость. Признаки отравления появляются через 1–6 часов после поступления нитратов в организм. Острое отравление начинается с тошноты, рвоты, поноса, отмечается увеличение и болезненность печени при пальпации, снижение артериального давления. Пульс при этом неровный, слабый, конечности холодные, дыхание учащается, появляются головная боль, шум в ушах, слабость, судороги мышц лица, нарушение координации движений, потеря сознания, кома. Нитриты натрия широко используются в качестве консерванта в пищевой промышленности при приготовлении колбас, мясных консервов, т.е. «взрослых продуктов», и не используются в производстве детского питания. Избежать отравления нитратами в наших силах. Возможно уменьшить концентрацию вредного вещества при помощи термической обработки, не использовать консервированные продукты. Есть сельскохозяйственные загрязнители, которые в неизменном виде попадают в окружающую среду, накапливаются в растениях, мясе и жире животных, и в том же неизменном виде попадают в организм человека, нанося непоправимый вред здоровью. К тому же, все эти вещества, к сожалению, способны проникать в грудное молоко, так что дети также не застрахованы от интоксикаций.

Боремся с нитратами

Основная масса нитратов поступает в растения через корневую систему и движется к листьям. Высокой способностью накапливать нитраты отличаются шпинат, салат, свекла, редька, редис, петрушка, сельдерей, укроп, ревень, бахчевые растения. Особенно высокая концентрация нитратов в капусте – в кочерыжке и прожилках листьев, у огурца, щавеля, укропа – в черешке (хвостике), у моркови, редьки – в нижней части корня. Содержание нитратов снижается при чистке, вымачивании, отваривании. При чистке от растения отделяют и выбрасывают наиболее нитратные части. Оставшиеся части растений вымачивают в воде, что позволяет снизить концентрацию нитратов еще на 25%. Вымачивать можно так: очищенные от прожилок листья замочить в воде на 1–2 часа, затем воду слить и налить новую, вымачивая еще 1–2 часа, в третьей воде их можно оставить на ночь. К сожалению, вымачивание эффективно лишь для листовых овощей: капусты, щавеля, петрушки. Более эффективна горячая водная вытяжка (отваривание), извлекающая до 85% нитратов из овощей, в том числе из корнеплодов (моркови, свеклы). Отвар необходимо сливать горячим, так как при остывании часть нитратов возвращается из отвара в корнеплод.

Пестициды

К серьезным проблемам со здоровьем приводит попадание в пищу сельскохозяйственных ядохимикатов, к которым относятся пестициды. Они широко используются в сельском хозяйстве для защиты растений от болезней, сорняков, вредителей, что увеличивает опасность попадания их остаточных количеств в пищу и оказания неблагоприятного воздействия на организм человека. Различаются пестициды по своей химической структуре (хлорорганические, фосфор-органические, ртутьорганические и др.). Применение некоторых из них запрещено. Но, несмотря на это, описаны многочисленные случаи отравления различными пестицидами через загрязненные пищевые продукты – муку, сахар, орехи. Клиническая картина отравлений пестицидами неспецифична: она включает в себя головокружение, головную боль, повышенную утомляемость, ухудшение аппетита и сна. Как правило, хронические отравления пестицидами проявляются затяжным течением хронических неспецифических заболеваний, могут протекать по типу гастрита (воспаления слизистой желудка), гепатита (воспалительного процесса в печени), бронхита (воспаления бронхов). Развивающиеся аллергические реакции на этом фоне усугубляют течение заболевания и затрудняют диагностику. Застраховаться от поступления пестицидов в организм можно только одним способом – не покупать продукты питания на «стихийных рынках».

Полициклические ароматические углеводороды

К ним относятся бензпирен, 20-метилхолантрен и др. Они оказывают канцерогенное действие при поступлении в организм даже в незначительных дозах (миллиграммах или микрограммах). Полициклические ароматические углеводороды можно обнаружить во многих пищевых продуктах (овощах, фруктах, копченостях, жареных на углях мясных продуктах), так как их источниками являются технологическая и кулинарная обработка – копчение, особенно в домашних условиях, и факторы загрязнения окружающей среды – отработанные газы внутреннего сгорания, промышленные сточные воды, различные виды упаковочного материала (некоторые целлофановые и жестяные упаковки), сажа и прочее. Поэтому из детского рациона следует исключить копченые продукты.

Полихлорированные дифенилы

Это высокомолекулярные хлорсодержащие соединения, попадающие в окружающую среду с отходами промышленного и химического производства, способные накапливаться в жировых тканях животных и, следовательно, жиросодержащих продуктах питания. Использование таких продуктов приводит к острым отравлениям, начальными проявлениями которых могут быть лихорадка, рвота, понос.

Диоксины

Диоксины одни из самых опасных химических загрязнителей окружающей среды и продуктов питания. Они являются побочными продуктами производства пластмасс, пестицидов, бумаги. Диоксины обладают канцерогенными и иммунотоксическими свойствами, очень устойчивы в окружающей среде, следовательно, попадают в корм животных, накапливаются в их жировых тканях, молоке и попадают в жиросодержащие продукты – масла, жиры, мясо, молоко. Особо сильно загрязнены диоксинами морепродукты, так как они являются биологическими фильтрами среды обитания, пропускающими через себя загрязненную воду. Общие симптомы длительного контакта с диоксинами представлены самыми разнообразными кожными проявлениями и неврологическими нарушениями, нарушениями репродуктивной функции. Могут возникнуть и такие симптомы – стойкая разнородная сыпь, нарушения нервной проводимости, причину которых очень трудно установить.

Тяжелые металлы

Тяжелые металлы широко распространены в живой природе и постоянно обнаруживаются в пищевых продуктах. Большинство тяжелых металлов являются незаменимыми пищевыми веществами, а к потенциально опасным для здоровья, т.е. токсичным, относятся кадмий, ртуть, свинец и олово. Для всех пищевых продуктов установлены предельно допустимые величины содержания тяжелых металлов, и соответствующие инстанции следят за соблюдением нормативов. Наличие каждого металла в пище контролируется методами химического анализа, а в организме человека – нормативами предельно допустимых концентраций. Загрязнение пищевых продуктов тяжелыми металлами происходит за счет выбросов промышленных предприятий и городского транспорта. Регулярное использование продуктов с высоким содержанием тяжелых металлов неизбежно приведет к нарушению работы многих систем организма (сердечно-сосудистой, дыхательной, пищеварительной, выделительной и др.), но для большинства тяжелых металлов нет «специфических» признаков отравления и поражения организма, что затрудняет выявление причины недуга, а следовательно, и его лечения. За счет обработки пищевого сырья – тщательного мытья, чистки продуктов, отделения малоценных частей можно удалить от 20 до 40% тяжелых металлов. Отравление токсичными тяжелыми металлами – ртутью, свинцом, оловом, как правило, возможно только на вредном производстве.

Стимуляторы роста животных

Прежде всего к ним относятся гормоны и антибиотики. В сельском хозяйстве для быстрого роста мышечной ткани животных применяются, как правило, анаболические гормоны, позволяющие при регулярном использовании увеличить мышечную (пищевую) массу животных. Наряду с гормонами для выращивания мясистого и здорового скота широко используются антибиотики. Как известно, определенная часть антибиотиков не выводится из организма. У животных также антибиотик частично остается в мясе, молоке. При использовании такого продукта возрастает риск развития аллергических реакций, нарушения местного иммунитета, изменения микрофлоры кишечника. В детском питании запрещено использование самих лекарственных веществ и продуктов, выращенных с их помощью. Стоит отметить, что тяжелые металлы и стимуляторы роста животных относятся к достаточно вредным, но контролируемым по концентрации в пищевых продуктах веществам. Все сырье, используемое для производства продуктов детского питания, соответствует «Гигиеническим требованиям безопасности и пищевой ценности пищевых продуктов» и одобрено органами Госсан-эпиднадзора Министерства здравоохранения РФ для использования в производстве продуктов детского питания, а готовые продукты соответствуют требованиям ГОСТов и поступают в продажу только после проведения клинических испытаний. Следовательно, продукты детского питания можно и нужно широко использовать в питании детей, не опасаясь за их качество и безопасность, так как они прошли тщательную проверку.

Диоксины . Среди рассматриваемых загрязнителей продоволь­ственного сырья и пищевых продуктов особое внимание следует уделить диоксинам, поскольку в имеющейся литературе этот вопрос освещен недостаточно.

Диоксин и диоксиноподобные соединения обладают высокой токсичностью, представляют реальную угрозу загрязнения пищегвой продукции, включая питьевую воду. Источниками загрязнения могут быть предприятия металлургической, целлюлозно-бумажной и нефтехимической промышленности. Наиболее опасный источник диоксинов - заводы, производящие хлорную продукцию, в том числе пестициды. В частности, речь идет о крупнотоннажных про­изводствах 2,4,5-трихлорфенола (ТХФ) и полихлорбифенола (ПХБ).

Непосредственными источниками интоксикации оказались 2,3,7,8-тетрахлордибензо-л-диоксин (2,3,7,8-ТХДД), образующийся как микропримесь при получении ТХВ, и 2,3,7,8-тетрахлордибензо-. фуран (2,3,7,8-ТХДВ) - микропримесь ПХБ.

ТХДД - наиболее опасный яд для человека. Отличается высо­кой стабильностью, не поддается гидролизу и окислению, устойчив к высокой температуре (разлагается при 750 °С), действию кислот и щелочей, невоспламеняем, обладает высокой растворимостью в жирах.

ТХДД относится к веществам первого класса токсичности с ли­митирующим показателем - бластомогенной активностью. Расчет­ная среднесмертельная доза для человека при однократном ораль­ном поступлении составляет 0,05-0,07 мг/кг, расчетная минималь­ная токсическая доза при хроническом оральном поступлении - 0,1 мкг/кг.

Наряду с ТХДД и ТХДФ, существует 22 изомера ТХДД и 38 изо­меров ТХДФ. Совокупность однороднозамещенных полихлор- и полибромдибензол-диоксинов и дибензофуранов включает 420 индивидуальных соединений. Количество смешанных диоксинов еще выше. Аналогичное разнообразие наблюдается у полигалогенированных бифенилов. Однороднозамещенные ПХБ включают 209 гомологов и изомеров. Столько же соединений входит в ряды полибромбифенолов (ПББ), однороднозамещенных галогенированных азобензолов и их азоксианалогов. Такое количество высо­коопасных диоксинов, циркулирующих во внешней среде, ставит серьезные проблемы в их идентификации, определении, методах обнаружения, установлении гигиенических нормативов.

При попадании в окружающую среду диоксины интенсивно на­капливаются в почве, водоемах, активно мигрируют по пищевым цепям, особенно в жиросодержащих объектах. В организм челове­ка диоксины поступают с продуктами питания (98-99 % от общей дозы). Среди основных продуктов опасные концентрации этих ве­ществ обнаруживаются в мясе, молочных продуктах и рыбе. Следу­ет отметить способность диоксинов накапливаться в коровьем мо­локе, где их содержание в 40-200 раз выше, чем в тканях животного. Источниками диоксинов могут быть картофель, морковь, другие корнеплоды, так как основная часть диоксинов кумупируется в корневых системах растений, и только 10 % - в наземных частях. Человек массой тела 70 кг получает с пищей в течение дня в сред­нем 0,35 нг ТХДЦ.

Особое внимание следует уделить проблеме содержания полихлорированных дифенилов и диоксинов в грудном молоке, что яв­ляется фактором риска для здоровья детей раннего и старшего возраста.

Допустимая суточная доза (ДСД) для человека согласно реко­мендации ВОЗ - 10 нг/кг. Аналогичный уровень принят в России.

ДСД является отправной точкой для нормирования содержания диоксинов а различных продуктах питания и воде. Максимально допустимые уровни (МДУ) их содержания в основных группах пи­щевых продуктов составляют, нг/кг (в пересчете на ТХДД):

Молоко (в пересчете на жир) - 5,2 (Германия - 1,4);

Рыба (съедобная часть) - 11,0, в пересчете на жир - 88,0;

Мясо (съедобная часть) - 0,9, в пересчете на жир - 3,3;

Пищевые продукты - 0,036 (США - 0,001);

■ вода объектов хозяйственно-питьевого и культурно-бытового назначения - 20 нг/п (США и Германия - 0,01).

В России предстоит большая работа в области идентификации и нормирования диоксинов. Принятый в настоящее время норма­тив по воде труднообъясним с гигиенических позиций, так как это продукт ежедневного и практически неконтролируемого потреб­ления.

Полициклические ароматические углеводороды (ПАУ). В на­стоящее время идентифицировано более 200 канцерогенных представителей ПАУ. К наиболее активным канцерогенам относят: бенз(а)пирен (БП), дибенз(а, h)антрацен, дибенз(а,i)пирен; к умерен но активным - бенз(h)флуорантен, менее активным - бенз(е)пи-рен,

Таблица 11. Оценка степени загрязнения окружающей среды ПАУ по уровню, мкг/кг или мкг/л

Обьект изучения Фоновое содержание Степень загрязнения
умеренная значительная большая
I Почва 1-3, ДО 10 До 20-30 ЗЫОО > 100
Растительность 0,01-1 До 10 11-20 > 20
Вода До 0,005 До 0,01 > 0,01
Объекты водной среды: донный песок высшие водные растения До 20-30 До 15-20 ДО 100 До 50 > 100 > 50
Атмосферный воздух (мкг/100мэ) 0,00005-0,0015 До 0,2 0,3-1,0 > 1,0

бенз(а}антроцен, дибенз(а,с}антрацен, хризен, индено(1,2,3-сd)пирен и др.

Канцерогенная активность реальных сочетаний ПАУ на 70-80 % обусловлена бенз(а)пиреном. Поэтому по присутствию БП в пи­щевых продуктах и других объектах можно судить об уровне их загрязнения ПАУ и степени онкогенной опасности для человека.

Канцерогенные ПАУ образуются в природе путем абиогенных процессов. Ежегодно в биосферу поступают тысячи тонн БП при­родного происхождения, еще больше - за счет техногенных ис­точников (промышленные предприятия, транспорт) (табл. 11, дан­ные 1987 г.). На сегодняшний день проблема загрязнения пищевой продукции ПАУ не потеряла своей актуальности.

В пищевом сырье, полученном из экологически чистых расте­ний, концентрации БП составляют 0,03-1 мкг/кг. Содержание БП впищевых продуктах дано в табл. 12.

Условия термической обработки пищевых продуктов оказыва­ют большое влияние на накопление БП. В подгоревшей корке хле­ба обнаружено БП до 0,5 мкг/кг, подгоревшем бисквите - до 0,75 мкг/кг Продукты домашнего копчения могут содержать БП более 50 мкг/кг.

Полимерные упаковочные материалы могут играть немаловаж­ную роль в загрязнении пищевых продуктов ПАУ, особенно при наличии в продуктах элюэнтов (веществ, экстрагируемых в растворителе).

Таблица 12. Содержание бензпирена в продовольственном сырье и пищевых продуктах

Пищевой продукт Концентрация! БП, мкг/кг Пищевой продукт Концентрация БП, мкг/кг
Свинина свежая Не обнаружен Рапсовое масло 0,9
Говядина свежая Не обнаружен Кокосовое масло 18,6-13,7
Колбаса вареная 0,26-0,50 Мука 0,2-1,6
- » - копченая 0-2,1 Мука высшего сорта 0,09
- и- полукопченая 0-7,2 Хлеб «Украинский»:
Телятина Не обнаружен мякиш корка 0,2 0,3-0,5
Телятина жареная 0,18-0,63 Хлебобулочные 0,13-0,47
Крабы свежие изделия
(сухая масса) 6-18 Ржаной хлеб 0,08-1,63
Угорь свежий (сухая масса) Белый хлеб, батон 0,08-0,09
Камбала свежая Зерно 017-4,38
(сухая масса) Ячмень и солод 0,35-0,70
Макрель свежая Не обнаружен Салат из кочанной
Макрель жареная 0,2-0,9 капусты
Цветная капуста
Треска 0,5 Картофель 1,0-16,6
Красная рыба 0,7-1,7 Кофе умеренно 0,3-0,5
Пикша 0,3 поджаренный
Копченая рыба 0,1-6,7 Кофе пережаренный 5,6-6,1
- » - форель 2,1 Сушеные фрукты:
оливы 23,9
- » - лосось вишня 14,2
Сельдь холодного копчения 11,2 груша яблоки 5,7 0,3
Внешняя часть 6,8 Сахар 0,23
Внутренняя часть 0,2-1,0 Молоко 0,01-0,02
Салака холодного Масло сливочное 0-0.13
копчения 10,6
Поваренная соль
Подсолнечное масло 0,93-30,00 различного
Оливковое масло происхождения 0,03-0,50
рафинированное Не обнаружен

Так, например, эффективным злюэнтом ПАУ является жир молока, который экстрагирует до 95 % БП из парафино-бумажных пакетов или стаканчиков.

С пищей взрослый человек получает в год 6 мкг БП. В интен­сивно загрязненных ПАУ районах эта доза возрастает в 3 и более раз. Предполагают, что для человека массой тела 60 кг ДСД БП должна быть не более 0,24 мкг. ПДК БП в атмосферном воз­духе - 0,1 мкг/100 м3, в воде водоемов - 5 мкг/л, в почве - 200 мкг/кг.

Контрольные вопросы к лекции 3

1. Антибактериальные вещества

2. Антибиотики

3. Сульфаниламиды

4. Нитрофураны

5. Гормональные препараты (назначение)

6. Полиакриламиды

  1. Пестициды - химические загрязнители пищевых продуктов.
  2. Технологические способы снижения остаточных количеств пестицидов в пищевых продуктах
  3. Группы регуляторов роста растений
  4. Полициклические ароматические углеводороды: характеристика, химическая природа, свойства, источники, воздействие на организм человека.
  5. Диоксины и диоксиноподобные соединения: характеристика, химическая природа, свойства, источники, воздействие на организм человека.
  6. Виды удобрений и их назначение
  7. Виды сточных води их характеристики
  8. Биологическое действие нитратов и нитритов на организм человека.
  9. Нитрозосоединения и их токсическое действие на человека.
  10. Технологические способы снижения содержания нитратов в продуктах.

Используемая литература

  1. Поздняковский В. М. Гигиенические основы питания, безопасность и экспертиза продовольственных товаров. – Новосибирск: Изд-во Новосиб. ун-та, 1999. – 448 с.
  2. Донченко Л. В., Надыкта В. Д. Безопасность пищевой продукции. – М.: Пищепромиздат, 2001. – 528 с.
  3. Нечаев А. П. Пищевая химия. – М.: Высшая школа, 1999. – 580 с.
  4. Гигиенические требования безопасности и пищевой ценности пищевых продуктов. Санитарные правила и нормы СанПиН 2.3.2.1078-2001. – М. : Минздрав России, 2002. – 168 с.
  5. Ефремов М. И. Осторожно! Вредные продукты: Не все вкусное полезно. – СПб.: «Невский проспект», 2003. – 160 с.
  6. Руководство по методам анализа качества и безопасности пищевых продуктов. Под ред. Скурихина И. М. – М.: Брандес, Медицина, 2001. – 340 с.
  7. Николаева М. А., Лычников Д. С. Идентификация и фальсификация пищевых продуктов. – М.: Экономика, 1996. – 107 с.
  8. Безвредность пищевых продуктов/Под ред. Г. Р. Робертса. – М.: Агропромиздат, 1968. – 288 с.
  9. Витол И. С. Экологические проблемы производства и потребления пищевых продуктов: учебное пособие. – М.: МГУПП, 1999. – 71 с.
  10. Парций Я. Е. Постатейный комментарий к Федеральному закону «О качестве и безопасности пищевых продуктов». – М.: Колос, 2001. – 160 с.
  11. Кулев Д. Х. Федеральный закон «О техническом регулировании» и особенности его реализации в сфере продовольственной безопасности. – М.: ДеЛи принт, 2004. – 64 с.

12. Габович Р. Д., Припутина Л. С. Гигиенические основы. 1987. С. 103.

13. Санитарно-гигиенические нормы (№4619-88).

14 Рубенчик Б.Л. Питание, канцерогены и рак. Киев: Наука – Думка, 1983.

15. Жукова Г.Ф. Содержание N-нитрозаминов в отечественных пищевых

продуктах//Вопросы питания. № 6 С. 55-56.

Биотехнологические проекты давно перешагнули из области научного знания в область промышленно-коммерческого использования. Научно-технический прогресс нашел применение результатам фундаментальных биологических и молекулярно-биологических исследований в сельском хозяйстве, пищевой промышленности и фармацевтике, медицине и приборостроении. Особенно широко в последнее время эксплуатируются достижения генетики и молекулярной биологии в сфере производства новых сортов сельскохозяйственных растений и пород животных, обладающих разнообразными новыми признаками, отсутствовавшими у родительских видов/сортов.

Быстрое и массовое производство таких сортов, легкость и научная предсказуемость приобретения ими заданных свойств привели к их широкому использованию. Так в настоящий момент посевы ГМО (генетически модифицированных организмов) во всем мире занимают площади более 67.7 млн. гектар.

Аргументы сторонников соблюдения принципов предосторожности заставляют в настоящий момент правительства многих стран Европейского союза, Азии и Африки вносить корективы в сельскохозяйственную политику и отказываться от производства ряда сортов ГМО. В мировой литературе развернулась острая дискуссия об обоснованности декларируемых рисков применения ГМО.

Многие аргументы сторонников соблюдения принципов предосторожности получили экспериментальное подтверждение (см. обзоры М.С.Соколова с соавт. (1), М Джованнетти (2))

1. Классификация рисков

Встраивание в геном организма-хозяина новых конструкций имеет цель получить новый признак, недостижимый для данного организма путем селекции или требующий годы работы селекционеров. Но вместе с приобретением такого признака организм приобретает целый набор новых качеств, опосредованных как плейотропным действием нового белка, так и свойствами самой встроенной конструкции, в том числе ее нестабильностью и регуляторным действием на соседние гены.

Все нежелательные явления и события, происходящие при возделывании и потреблении ГМО, можно объединить в три группы: пищевые, экологические и агротехнические риски.

1.1. Пищевые риски

  • Непосредственное действие токсичных и аллергенных трансгенных белков ГМО.
  • Риски, опосредованные плейотропным действием трансгенных белков на метаболизм растений.
  • Риски, опосредованные накоплением гербицидов и их метаболитов в устойчивых сортах и видах сельскохозяйственных растений.
  • Риски горизонтального переноса трансгенных конструкций, в первую очередь в геном симбионтных для человека и животных бактерий (E.coli, Lactobacillus (acidophillus, bifidus, bulgaricus, caucasicus), Streptococcus thermophilus, Bifidobacterium и др.).

Экологические риски

  • Снижение сортового разнообразия сельскохозяйственных культур вследс¬твии массового применения ГМО, полученных из ограниченного набора родительских сортов.
  • Неконтролируемый перенос конструкций, особенно определяющих различные типы устойчивости к пестицидам, вредителям и болезням растений, вследствии переопыления с дикорастущими родственными и предковыми видами. В связи с этим снижение биоразнообразия ди¬корастущих предковых форм культурных растений и формирование «суперсорняков».
  • Риски неконтролируемого горизонтального переноса конструкций в ризосферную микрофлору.
  • Негативное влияние на биоразнообразие через поражение токсичными трансгенными белками нецелевых насекомых и почвенной микрофлоры и нарушении трофических цепей.
  • Риски быстрого появления устойчивости к используемым трансгенным токсинам у насекомых-фитофагов, бактерий, грибов и других вреди¬телей, под действием отбора на признак устойчивости, высокоэффек¬тивного для этих организмов.
  • Риски появления новых, более патогенных штаммов фитовирусов, при взаимодействии фитовирусов с трансгенными конструкциями, прояв¬ляющими локальную нестабильность в геноме растения-хозяина и тем самым являющимися наиболее вероятной мишенью для рекомбинации с вирусной ДНК.

Агротехнические риски

  • Риски непредсказуемых изменений нецелевых свойств и признаков модифицированных сортов, связанные с плейотропным действием введенного гена. Например, снижение устойчивости к патогенам при хранении и устойчивости к критическим температурам при вегетации у сортов, устойчивых к насекомым-вредителям.
  • Риски отсроченного изменения свойств, через несколько поколений, связанные с адаптацией нового гена генома и c проявлением как новых плейотропных свойств, так и изменением уже декларированных.
  • Неэффективность трансгенной устойчивости к вредителям через несколь¬ко лет массового использования данного сорта.
  • Возможность использования производителями терминальных технологий для монополизации производства семенного материала.

История вопроса

Риски, связанные с производством биотехнологической продукции, начали обсуждаться в научной литературе с 1983 г. (3, 4). К середине 80-х г. в развитых странах вырабатывается государственная политика по биотехнологии. Так, например, в США контроль за использованием ГМО находится в юрисдикции трех агентств, американского Агентства по охране окружающей среды, американского Министерства сельского хозяйства, и американского Управления по санитарному надзору за качеством пищевых продуктов и медикаментов. Существует так же координационный комитет, осуществля¬ющий согласованную работу всех трех ведомств по данному вопросу. Цели, задачи и законы, регламентирующие деятельность этого комитета, были опубликованы в 1986 г. (5).

Однако возможность формирования выраженного иммунного ответа на трансгенный белок, являющийся аллергеном и потребляемый в составе растительного продукта, были известны и ранее.

Например, за три года до начала этой дискуссии, Х.С.Мэйсон с соавт. показали высокий иммунный ответ у мышей на трансгенный картофель, модифицированный капсидным вирусным белком (9). Поскольку работа была посвященна модели оральной иммунизации животных белками, продуцируемыми в трансгенных системах, результаты этой и подобных работ остались незамеченными для диетологов и аллергологов. Тем не менее, работы, посвященные механизмам иммунного ответа человека на лектины, в частности хлебного дерева и сои, связывающихся с иммуноглобулином IgA1 (10) и приводящим к слипанию эритроцитов (11), были хорошо известны.

На страницах «BINAS News» опубликована полемика 1999 года, как критика и опровержение результатов А.Пуштаи, например, Д.Гейтхаусом, Ф.Дали, Р.Д.Брауном, так и позиция сторонников точки зрения А.Пуштаи, Б.Мифлина, Ж.Рифкина и др. (12). Тогда-же Е.Дришш и Т.Бег-Хансен публикуют меморандум, поддержавший А.Пуштаи и основанный на экспертной оценке его результатов группой из 20-ти (помимо авторов меморандума) ученых. Собственно, результаты Пуштаи были представлены в научной прессе после проведения экспериментов и подтверждения заявленных результатов сотрудником Абердинского Университета, С.В.Ивеном (5,7).

Позднее появляются работы, проведенные на культурах клеток крови человека и колоректальной карциномы, подтверждающие результаты А.Пуштаи (13, 14), начинают разрабатываться методики, посвященные оценке пищевых рисков, связанных с действием потенциальных аллергенов (15, 16).

Показательна история с сортом кукурузы StarLink® , скандал вокруг кото¬рой разгорелся в 2000–2001 гг. Эта кукуруза, трансформированная белком-токсином Bacillus thuringiensis Cry9C , была разрешена американским Агентством по охране окружающей среды к использованию с ограничениями, как кормовая культура в 1998 г.

Ограничение в использовании было вызвано результатами тестирования белка Cry9C на устойчивость к перевариванию пепсином и к нагреванию , показавшими устойчивость выше минимально допустимой (19).

Данные экспериментов по оценке токсичности и аллергенности модифицированного продукта всего на 10 крысах, якобы свидетельствали о его безопасности. В пользу своей точки зрения «Авентис» указывала на 30-летний опыт применения белка Cry9C в США в качестве инсектецида, и отсутствие данных в научной литературе по токсичному и аллергенному действию белка Cry9C.

Ряд публикаций, посвященных оценке аллергенности и других возможных воздействий на организм подопытных животных белками Cry9C и родственного ему Cry1Ab, показали отсутствие патогенного действия данных белков в составе ГМО (21–23). Тем не менее, существующие данные по аллергенности токсинов B. thuringiensis (24) заставили провести дополнительные исследования аллергенности Cry–белков .

Гликозилирование – особенность многих аллергенов пищи (28), и известно, что Cry-белки имеют потенциально гликозилируемые участки (29), и взаимодействуют с мембранными аминопептидазами, что свидетельствует о наличии у Cry-белков гликозил-фосфатидилинозитольного мембранного якоря (30).

Эти данные подтверждают первоначально осторожную оценку в применимости сорта StarLink® (19, 31) и оправдывают постоянно ведущийся в США мониторинг сортов кукурузы и производимых из них пищевых продуктов на присутствие белка Cry9C (32).

Свойства белков, обладающих бактерицидной, фунгицидной и инсектицидной активностью, используемых для трансформации сортов сельскохозяйственных растений

Как правило, токсичным или аллергеным действием обладают трансгенные белки, обеспечивающие устойчивость растений-реципиентов к поражению различными видами насекомых, грибковым и бактериальным заболевани¬ям. Устойчивость обеспечивается действием белков, обладающих набором специфициских свойств. Среди них:

  • ферментативная активность к наиболее мажорным компонентам кле¬точной стенки целевых организмов (например, хитиназы для насекомых и грибов),
  • лектиновая активность (лектины и арселины), опосредующая связыва¬ние с определенными рецепторам и мембранными гликопротеинами и реакции гликозилирования и приводящая к слипанию клеток желудочно-кишечного тракта и нарушению работы пищеварительных ферментов насекомых – вредителей,
  • ингибирование рибосомальных белков (RIPs-белки), приводящее к нарушению синтеза новых белков клетками, контактирущими с RIPs,
  • ингибирование функций пищеварительных протеаз и амилаз целевых организмов,
  • формирование сквозных каналов в клеточной мембране (Cry- проток¬сины Bacillus thuringiensis, активизирующиеся после протеолитического расщепления), приводящее к лизису атакованных данными полипептидами клеток,
  • проникновение в виде фрагментов исходного белка через стенки кишечника и связывание с ганглиозидами клеточных мембран (растительные протоксины: уреазы и канатоксины), что приводит к экзоцитозу клеток различных типов, разрушению кровяных пластинок и сопровождается гибелью целевого организма.

Табл.1 Действие некоторых растительных и бактериальных токсинов на целевые организмы и человека (19–30, 33–72).

Устойчивость к патогенам и вредителям формируется благодаря экспрессии генов этих белков под действием тканеспецифичных промоторов в целевых тканях и органах растения. В настоящий момент практически все перечисленные классы белков используются при создании коммерческих сортов пищевых и кормовых растений.

4. Свойства трансгенных белков, обладающих инсектицидной активностью.
Данные, приведенные в табл.1, свидетельствут о значительной токсичности или аллергенности представителей большинства указанных классов белков, при их введении перорально.

Однако часть из них присутствует и в норме в различных видах употребляемой растительной продукции. Проявление токсичных свойств таких белков будет опосредовано тканевой спецификой их экспрессии и концентрацией самих белков или синтезируемых при их участии продуктов метаболизма, например, ферментов биосинтеза гликоалкалоидов (в частности, соланина) у пасленовых (например, у помидоров, баклажанов, перца. прим.ред).

Уреазы редко используются для трансформации растений (32а), так как для млекопитающих хорошо известен токсичный эффект ряда белков этого класса, выраженый при инъекционном введении белка. Вообще все белки этого класса имеют сходный набор ферментативных и лектиновых функций (33, 34). Известно, что канатоксины и уреазы не стойки к кислой среде, и поэтому при попадании с пищей в пищеварительный тракт разрушаются еще в желудке (35). Белки переваривабтся в составе растительной ткани, где они содержатся в строго определенных количествах, причем все этапы созревания, транспортировки и запасания белка идут в соответствии с естественными программами регуляции функций клетки.

Как ведут себя трансгенные белки с повышенной экспрессией, насколько они доступны действию желудочного сока в составе трансгенной растительной ткани, необходимо выяснять в каждом конкретном случае. Тем более, что значительное увеличение экспрессии уреазы в трансгенных растениях (за счет плейотропных эффектов – см. ниже) показано, например, для коммерциализируемого сорта сои 30-4-2, устойчивого к пестициду Раундап (36).

Свидетельством важности проверки активности уреаз в трансгенных сортах являются также данные о снижении индекса перевариваемости корма бройлерными цыплятами при повышении активности соевых уреаз в нем, даже не смотря на снижение активности трипсинового ингибитора (37). Неясно также, как изменяется кругооборот азота в трансгенном растении и каковы последствия этих изменений для разных биоактивных метаболитов, так как механизмы индукции активности уреаз растений пока не выяснены (38).

Ингибиторы сериновых протеаз обладают множественными функциями. Выполняя у растений роль запасающих белков, белков-регуляторов апоптоза и внутриклеточного протеолиза, они дополнительно способны блокировать ферменты пищеварительного тракта насекомых, действуя как неспецифичные субстраты.

Пищеварительные ферменты насекомых, в частности их функциональные домены, сохранили высокое структурное сходство с подобными ферментами позвоночных, в том числе и человека, что приводит к сходному действию на них используемых растительных белков-ингибиторов (33, 39–43) .

Длительное воздействие на крыс соевыми ингибиторами протеиназ, в качестве пищевой добавки, или муки сырой сои, приводило к гипертрофии и гиперплазии поджелудочной железы, вплоть до неопластических новообразований и карциномы. Термальная обработка белков и пищи предотвращает эти эффекты (44). Подобное действие ингибиторов эндопептидаз сои на поджелудочную железу отмечено и для человека (45).

Здесь же следует отметить, что предлагается использовать в качестве трансгенных белков ингибиторы протеиназ млекопитающих, в частности белка-ингибитора бычьего трипсина, обладающего выраженным инсектицидным действием (46). Однако эффект длительного воздействия этих белков в составе трансгенной пищи вообще не изучен.

Ряд растительных ингибиторов альфа-амилазы формируют комплексы с ферментами слюнных и поджелудочной желез и достигают максимальной активности при температуре от 35 до 50о С (47, 48). Некоторые ингибиторы альфа-амилаз хорошо известны как сильные аллергены, например, тетрамерный ингибитор амилазы пшеницы (49). В работах, посвященных свойствам белков этого класса и их прикладному использованию (50, 51), перечислено значительное количество токсичных и аллергенных растительных ингибиторов альфа-амилазы и указана необходимость сторгих оценок их пищевых рисков.

Физиологическое действие арселинов на млекопитающих не изучено, но известно, что они близки по структуре и свойствам к фитогемагглютининовым лектинам и ингибиторам альфа-амилазы (52), что предполагает сходные пищевые риски.

RIP’s белки, или ингибиторы рибосомальных белков, имеют узкую видовую специфичность к различным рибосомальным белкам. Они удаляют консервативный аденин из 28S субъединицы РНК, что препятствует сборке рибосом и приводит к гибели клеток. В силу своей видовой специфичности можно подобрать белки, обладающими инсектицидными, фунгицидными или бактерицидными свойствами (53, 54).

Растения, трансформированные такими белками под специфическими вирусными промоторами, устойчивы к вирусным инфекциям, супрессируя выработку вирусных белков в инфицированных клетках (55). Но не стоит забывать, что рицин, один из сильнейших ядов, относится именно к этой группе белков .

Другой пример: циннамомин, формирующий устойчивость трансгенных растений к личинкам насекомых, специфичен к 28S РНК крысы (56). Поскольку инактивация рибосом происходит необратимо, даже слабая аффинность RIP’s к рибосомальным белкам млекопитающих будет приводить к эффекту накопления. Поэтому проверка безопасности таких белков, выделенных в составе экстракта из трансгенного растения, должна проводиться длительное время, в том числе и на культурах человеческих клеток (что не делается) .

Лектины были одними из первых трансгенов при формировании устойчивости к насекомым. Связываясь с гликанами на поверхности клетки, они приводят к слипанию клеток и нарушению физиологических функций организма. С этим свойством растительных лектинов связана 40-летняя история их применения в качестве цитотоксических препаратов при химиотерапии раковых заболеваний (57, 58).

О формировании иммунного ответа на некоторые трансгенные лектины мы упомянули в разделе «история вопроса» (6–8, 10, 11). Высокие пищевые риски при использовании лектинов были подтверждены и в других исследованиях . Так, лектин нарцисса, обладающий ярко выраженными свойствами инсектицида, является мутагеном, причем наиболее сильное мутагенное действие показано на культурах лимфоцитов человеческих эмбрионов и из периферического кровотока детей раннего постнатального периода развития (59). Эти данные показывают опасность использования данного лектина и близких к нему в первую очередь для наиболее молодой части человеческой популяции.

Проводимые работы с трансгенными инсектицидными лектинами бразильского ореха Bertholletia excelsa были прекращены в связи с их высокой аллергенностью (60, 61). Хитин-связывающие лектины из проростков пшеницы и фасоли обладают огромным инсектицидным потенциалом, но при этом токсичны для млекопитающих. Поэтому первоначально полученные трансгенные сорта кукурузы с широким спектром устойчивости к вредителям оказалось невозможным использовать в пищевых целях (62).

Для трансформации растений ферментами, разрушающими мажорные компоненты клеточной стенки вредителей, обычно хитина, используют растительные хитиназы, и хитиназы бактерий и насекомых (62, 63). Трансгенные конструкции на основе хитиназ сейчас очень популярны: хитиназами модифицированы различные сорта риса (64–66), картофеля (67, 68), пшеницы (69) и других культур. В то же время хорошо известны так называемые «латексные» или «банановые» аллергии, главным аллергеном в которых выступают хитиназы авокадо, бананов, каштана (70, 71). Хотя показана высокая аллергенность только хитиназ 1-го класса, возможная модификация трансгенного белка и близость структур хитиназ разных классов требует тщательной проверки на аллергенность всех трансгенных по хитиназам сортов (что не сделано).

Устойчивость к болезням может также индуцироваться не только белками, но и продуктами обмена веществ – вторичными метаболитами. Сорта кукурузы, табака и томатов с увеличенной экспрессией кислых пероксидаз вырабатывают в листьях повышенное содержание лигнина, препятствующего поражению растений насекомыми-вредителями (72). Продуктами разложения лигнина являются токсичные и мутагенные фенолы и метанол. Поэтому увеличение содержания лигнина в силосной массе, плодах или листьях табака представляет прямую опасность.

Картофель, устойчивый к ряду болезней, модифицированный пероксидазой и кислой хитиназой, помимо лигнина содержит сублетальное (для растения) количество перекисных радикалов (68). При этом не изучено, как будут модифицироваться в этих условиях алкалоиды, которыми богаты пасленовые (см. Раздел «Плейотропные влияния трансгенных белков»).

В заключение этого раздела – об аллергиях.

Аллергия на продукты питания – явление достаточно распространенное и неуклонно растущее среди населения развитых стран. Это связано, в первую очередь, с неблагоприятной экологической обстановкой, изменением традиционного рациона питания, к которому каждый народ адаптировался на протяжении многих веков, и современными технологиями пищевой промышленности, приводящими к повышенному содержанию в пище различных ксенобиотиков. И в этом смысле характеристикам трансгенных белков, обладающих инсектицидной активностью, необходимо уделить пристальное внимание, поскольку примерно половина патогенез-зависимых белков растений являются аллергенами (73). Повышение их содержания в устойчивых к заболеваниям сортов растений имеет прямой риск повышения аллергенности продуктов питания, изготовленных на основе этих сортов.

Детские аллергии – экссудативный диатез и нейродермит, вообще имеют особый статус в аллергологии. Иммунная система человека окончательно формируется только к 12–14 годам, а кишечная флора, адаптированная к «взрослой» пище – к 3-м годам. Слизистая оболочка пищеварительного тракта ребенка обладает повышенной проницаемостью, как для питательных веществ, так и для патогенов. Это компенсируется высоким содержанием разнообразных иммуноглобулинов и лимфоцитов в крови и слизистой оболочке кишечника ребенка.

Пищевые риски, связанные с устойчивостью ГМО к гербицидам.

Устойчивость возделываемых сортов к действию пестицидов дает большой экономический эффект – ручная или машинная прополка заменяется быстрой и сравнительно дешевой обработкой пестицидами, приводящей к гибели сорняков. Эта практика ведет к увеличению масштабов использования гербицидов , и, соотвественно их воздействия на окружающую среду, а также вызввает быстрый отбор видов-сорняков, обладающих повышенной устойчивостью к применяемым пестицидам (1, 75).

Для придания растению повышенной устойчивости к такому распространенному гербициду, как глифосат, используют конструкции на основе одного из двух генов: EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) и GOX (глифосат оксидоредуктаза). Сами по себе эти белки не являются ни аллергенами, ни токсинами.

Для оценки безопасности пищевого примения таких сортов, необходимо знать: какова способность таких сортов к накоплению ядовитых для человека и животных инсектицидов, и не происходит ли накопления других ядовитых метаболитов или аллергенов под действием плейотропных эффектов трансгенных конструкций.

Следует иметь ввиду, что практически все пестициды токсичны для человека. Глифосат, например, является канцерогеном, вызывая лимфому (76). Обычно в работах, посвященных получению устойчивых к гербицидам сортов и их свойствам, указывают на отсутствие негативных свойств, подтвержденных многочисленными проверками (77).

Действительно, исходя из правил получения и дальнейшей валидации трансгенной культуры, оцениваюся перевариваемость белков и состав метаболитов нового сорта, учитывается количество встроенных конструкций и нецелевые изменения свойств сорта, отбираются только стабильные трансформанты.

Сотрудниками фирмы «Монсанто» было показано, например, хорошее соответствие состава модифицированной сои, устойчивой к глифосату, и родительского традиционного сорта (78). Но в литературе имеются данные, что при обработке глифосатом устойчивых к нему сортов сахарной свеклы, растения накапливают токсичные метаболиты глифосата (79).

Более того, показана способность репродуктивных тканей (!) хлопчатника, устойчивого к глифосату, к очень высокому накоплению этого гербицида – от 0,14 до 0,48 мг/г (80). Это чрезвычайно важно, так как такие дозы при употреблении в пищу будут смертельными (допустимые дозы остаточного глифосата и его токсичных метаболитов в пищевых продуктах в США – 0,02 мг/кг сухого вещества).

К сожалению, информация по анализу остаточных концентраций гербицидов в устойчивых сортах в сопровождающих документах и описаниях отсутствует. Насколько широко распространено это свойство устойчивых к глифосату сортов, какова тканевая специфичность накопления глифосата – неизвестно.

Другим эффективным и распространенным гербицидом является атразин.

Устойчивость картофеля и табака к его действию обеспечивается встраиванием в геном цитохрома CYP1A1, представителя класса P450 цитохромов (81, 82). Вместе с тем, известно немало работ, посвященных канцерогенным, иммунотоксичным и эмбриотоксичным свойствам этого вещества (например 83, 84). И в этом случае вопрос о накоплении этого гербицида в устойчивых к нему сортах не привлекает внимания разработчиков. А пищевой риск такого накопления огромен.
Риски, связанные с плейотропными влияниями трансгенных белков и конструкций, определяющих устойчивость к гербицидам, мы рассмотрим в следующем разделе.

Модификация метаболизма и плейотропные влияния трансгенных белков.

Пищевые риски могут быть связаны с действием плейотропных эффектов как самих трансгенных белков, так и регуляторным действием встроенных конструкций. Выше уже упоминалось усиление активности уреаз в трансгенном сорте сои, устойчивой к гербициду раундап (36).

Несмотря на правила валидации трансгенных сортов, обнаружить нецелевые изменения метаболизма, активности различных белков, включая лектины и фитогормоны, не просто – исследователь не знает точно, что проверять. Изменения могут быть не количественными, а качественными, например, состава минорных фракций гликоалкалоидов, которые совместно могут обладать многократным синергетическим усилением мембранолитической активности.

Существуют ли объективные основания для таких опасений? С конца 90-х годов проводилость изучение биосинтеза флавоноидов, природных антиоксидантов, участвующих в защите тканей растения от негативных последствий фотохимических реакций, на модели трансгенных растений (85). В настоящий момент существуют трансгенные сорта помидоров (86) и картофеля (87) с усиленной продукцией флавоноидов. Принято считать, что повышенное содержание флавоноидов на организм человека положительно. Но такое изменение метаболизма растений может приводить к росту пищевых рисков.

Так, масс-спектрофотометрический анализ трансгенного картофеля показал резкое изменение состава минорных фракций гликоалкалоидов (87). Для оценки пищевых рисков в таких случаях необходимо проведение долговременных тестов, которые пока не проводятся.

Проводя работы по созданию трансгенных растений с устойчивостью к стрессующим факторам и для увеличения урожайности, используют ключевой фермент синтеза полиаминов – аргинин декарбоксилазу (88). Результатом гиперэкспрессии этого фермента у трансгенных табака и риса является повышенное содержание агматина – его непосредственного метаболита, и в ряде случаев – рост концентрации вторичных метаболитов путрисцина, спермидина и спермина (88, 89).

При этом как агматин, так и его производные, являются биологически активными веществами, способными взаимодействовать с адренэргическими, имидазолиновыми и глутаматными рецепторами, выступая для организма человека в роли как нейромедиаторов, так и активаторов мито¬за и способствуя опухолеобразованию (90, 91). Будучи небелковой природы, эти вещества легко усваиваются организмом. Адекватность используемых в настоящий момент тестов для проверки таких рисков сомнительна.

Не обойдены вниманием производителей и цитокинины – растительные гормоны, производные пурина .

Сорта томатов, модифицированных генами изопентилтрансферазы и бактериальной фитоэнсинтазы, обладают повышенной продуктивностью (92, 93). Однако сложнейшая регуляторная сеть, включаемая действием цитокининов в организме растения и затрагивающая как метаболизм, так и разнообразные тканевые и ростовые процессы, только изучается (94), и предсказать все эффекты от такого рода изменений пока невозможно. Но показано, что содержание фитогормона зеатина пуринового ряда и его производных растет (94а).

Известны сильнейшие эффекты этих гормонов на клетки человека и млекопитающих различных типов (95, 96), за счет модуляции Ras – опосредованных клеточных сигнальных каскадов (97), ацетилхолинэстеразной активности (98), активности пуринорецепторов (99). Пока допустимые безопасные концентрации используемых фитогормонов в растительных продуктах не будут определены, остается высоко вероятным пищевой риск с использованием этих технологий.

У сорта пшеницы, модифицированного кислой глюконазой и хитиназой, наблюдалась гиперэкспрессия специфицеской фенилаланин-аммоний лиазы и связанное с этим накопление салициловой кислоты, приводящее к некрозам растительной ткани (100). Сама салициловая кислота обладает массой полезных свойств, и в модифицированном виде хорошо известна как аспирин, вот только в качестве пищевой добавки к хлебу или макаронным изделиям она может не подойти.

Риски производства фармацевтических препаратов в ГМО.

В 2003 г. возник термин «Фармагеддон» (101). Основанием служит большое число сортов риса и кукурузы, разрабатываемых и культивируемых различ¬ными биотехнологическими компаниями, несущих биологически активные вещества, в том числе: вакцины, гормоны роста, факторы свертывания крови, индустриальные энзимы, человеческие антитела, контрацептивные белки, подавляющие иммунитет цитокины и вызывающие аборт препараты. Существуют (101, 102) следующие риски неконтролируемого использования такой продукции:

  • угроза переопыления и неконтролируемого распространения таких сортов среди пищевых;
  • риск неконтролируемого экспонирования пищевых вакцин беременным;
  • распространение вакцин и биоактивных веществ, выделяющихся в естественных условиях из растительных остатков через почвенные и поверхностные воды.

Насколько обоснованы эти риски?

При переносе пыльцы растений ветром или насекомыми на места произрастания других сортов этого же вида, а также при случайном смешивании сортового материала, образуются гибридные растения, несущие признаки обоих сортов. Пример с сортом кукурузы StarLink ® – не единственное подтверждение реальности таких рисков.

В Мексике и Гватемале дикорастущие виды кукурузы уже плотно насыщены трансгенными вставками, за счет переопыления с возделываемыми культурными сортами (1). В то же самое время, на рисовых полях Калифорнии среди пищевых сортов риса проводятся открытые полевые испытания сортов риса, несущего человеческие белки лактоферрин и лизозим, используемые в фармакологии при энзимотерапии.

Неконтролируемое распространение вакцин в составе пищевых продуктов обладает не меньшим риском. В ходе эмбриогенеза формирующаяся иммунная система «учится» распознавать «свои» белки, не путая их в дальнейшим с «чужими». Белки, экспонируемые клеткам иммунной системы во время эмбриогенеза, запоминаются как «свои». Если белок вакцины в это время попадет в кровоток эмбриона, то родившийся ребенок не сможет вырабатывать иммунитет к данному заболеванию, всегда распознавая данную бактерию или вирус как «свой».

При сборе урожая любой пищевой культуры огромная масса растительных остатков – листвы, стеблей и корней, остается на полях. Вероятность прямого распространения в почвенных водах белков, входящих в состав растений, низка, хотя значительно выше вероятность горизонтального переноса трансгенных конструкций в почвенных и других бактерий (см. далее). Но, кроме этого, существует еще один аспект рисков – это неконтролируемая вакцинация птиц и млекопитающих, обитающих в данной местности.

Если трансгенные вакцины направлены против бактерий и вирусов, имеющих местных животных в качестве переносчиков (или бактерий, родственных человеческим болезнетворным бактериям), то такая вакцинация спровоцирует мощный отбор среди патогенов и формирование суперинфекций.

Риски горизонтального переноса трансгенных конструкций.

Горизонтальный перенос генов широко известен в царстве бактерий. В ходе эволюции обмен генами осуществлялся как между ними, так и между бактериями и эукариотами. Способность обмениваться участками генома бактерии сохраняют до сих пор. И это свойство бактерий имее прямое отношение к экологическим и пищевым рискам испольгования ГМО.

Нахождение в желудочно-кишечном тракте в составе пищи собственно ферментов, использующих антибиотик как субстрат, практически безопасно для человека и животных. Ферментам необходимы строго определенные условия для проявления активности, поэтому белки, осуществляющие внутриклеточный метаболизм, функционировать будут только в составе живой клетки.

Вероятность встраивания трансгенной конструкции из растения в геном млекопитающих и человека ничтожно мала. Следует учитывать, что клетки высших эукариот имеют несколько изолирующих барьеров, эффективно препятствующих горизонтальному переносу. Даже в случае такого переноса клетка, как правило не размножается, находясь в терминальной стадии дифференцировки.

Перенос конструкции в половые клетки вообще невероятен, учитывая гемато-тестикулярный барьер, не проницаемый для крупных молекул. Но не следует забывать, что человек имеет эндосимбионтов, в частности, кишечную бактериальную флору. Известно, что бактерии способны к трансформации как кольцевыми, так и линейными формами ДНК с инвертированными повторами (103).

Фрагменты трансгенной ДНК в содержимом кишечника, крови и молоке животных, питающихся ГМО (у коров – 104, у свиней – 105). При этом, в соответствии с часто применяемой методикой отбора трансгенных конструкций под действием антибиотиков, эти фрагменты несут репортерные гены устойчивости к антибиотикам в качестве маркерных последовательностей (77, 106). Эти гены могут быть как молчащими, так и нормально экспрессирующимися. В любом случае, трансформация ими симбионтных или патогенных бактерий может «включить» их уже в составе бактериального генома, например, путем рекомбинации и возникновения т.н. химерных белков, обладающих ферментативной активностью по отношению к антибиотику.

Это ведет к формированию устойчивости к антибиотикам или самих симбионтных бактерий, или патогенной флоры. Результатом использования антибиотика при заболевании будет быстрый отбор бактерий, устойчивых к нему, и антибиотик либо начнет перерабатываться непосредственно в кишечнике, не достигая целевых патогенных бактерий, либо не будет оказывать влияния на резистентные к нему патогены.

Поскольку основные бактерии-симбионты живут в толстой кишке, риск метаболизма антибиотиков бактериями кишечной флоры касается, в основном, плохо всасывающихся антибиотиков, например неомицина и канамицина. Трансгенные конструкции, несущие в качестве маркерного признака устойчивость как раз к таким препаратам, и были широко использованы биотехнологическими компаниями.

Сценарии риска трансформации бактерий растительными конструкциями подвергались критике, например А.Л.Коновым (107), на основании экспериментальных данных, демонстрирующих низкую частоту передачи наследственного материала от ГМО-организмов болезнетворным бактериям.

Обратимся к цифрам и фактам.

Порядок частот трансформации для разных штаммов бактерий при обнаружении трансформированных колоний составлял 10-4 –10-8 , при отсутствии таковых – не выше 10-16 . Число симбионтных бактерий в одном грамме содержимого кишечника достигает 10-11 .При пересчете на общее содержимое кишечника это даст вполне высокую вероятность трансформации бактерий-симбионтов.

Для Escherichia coli давно известно большое число патотипов, имеющих различия от нескольких до 1387 новых генов, расположенных в штамм-специфических кластерах и приобретенных в разное время путем горизонтального переноса (108, 109). То-есть, горизонтальный перенос генов для нее не исключительное событие.

Что касается передачи устойчивости к антибиотикам между различными бактериями, то это вполне доказанное явление. Был показан перенос устойчивости к антибиотикам от патогенных Acinetobacter baumannii к E.coli и Proteus mirabilis (110). Действительно, эффективная бактериальная система переноса генов устойчивости к антибиотикам представлена IncQ-подобными плазмидами, передающимися между E.coli, Acinetobacter sp. и другими штаммами бактерий (111). И вероятность формирования рекомбинантных плазмид, несущих новые гены из конструкций, с новой устойчивостью к пока эффективным антибиотикам, пока никак не оценивалась.

В связи с изложенным выше материалом по свойствам белков с инсектицидной активностью возникает еще один риск – формирования новых патогенных штаммов E.coli. Показано, что широко используемый в трансгенных конструкциях 35S промотор вируса CaMV, контролирующий экспрессию целевого гена, распознается транскрипционным комплексом широкого спектра видов бактерий (112, 113). При этом велика вероятность получения химерных белков с непредсказуемыми свойствами. Какова специфичность экспрессии других используемых промоторов – предстоит оценить, и без такой оценки говорить о безопансости используемой ГМ-технологии.

В некоторых работах оценка рисков горизонтального переноса проводится на основе анализа методами ПЦР (полимеразной цепной реакции) мускулатуры животных, питающихся трансгенной растительной пищей (114). Очевидно, подобный подход совершенно не обоснован, и отсутствие маркеров конструкций в мускулатуре, вполе ожидаемое, никак не связано с реальными рисками горизонтального переноса.

Характеристики плейотропных влияний (или отсутствие таковых) встроенных генов и конструкций, проведенные с непосредствнно полученным сортом, должны меняться с течением времени. Это связано с нестабильностью ряда конструкций, способных к перемещению в геноме и амплификации с течением времени. Уже известны примеры по изменениям в геноме трансгенных растений, связанные с наличием «горячих точек» рекомбинации в конструкциях (115). Эти процессы резко снижают надежность и устойчивость однажды заявленных производителями свойств новых трансгенных сортов.

Критика метода отбора трансформированных культур по устойчивости к антибиотикам привела к тому, что использование репортерных генов устойчивости к антибиотикам запрещено для получения новых пищевых сортов, такие сорта изымаются из обращения. Тем не менее, во многих случаях использование плазмид, содержащих нетранскрибируемые копии генов устойчивости к антибиотикам продолжается.

И продолжается использование таких запрещенных сортов: согласно сообщению Mr. Morley от 25 июня 2003 года в Английском парламенте, в Англии на полях с ГМО сортами растений были найдены сорта, несущие гены устойчивости к канамицину и неомицину, ампициллину и амоксициллину, и к гидромицину.(115а)

Заключение

Отмеченные выше факты неблагоприятного воздействия трансгенов на организм человека и животных не свидетельствуют о порочности технологии создания ГМО как таковых. Мы обращаем внимание на актуальность проблемы анализа пищевых и прочих рисков использования ГМО, на необходимость выработки норм экспертизы и тестирования новых сортов, с учетом уже известных рисков и постоянному жесткому контролю ГМО по исходным, не модифицированным сортам.

Безусловно, оценка таких рисков всегда будет относительна – любые употребляемые нами продукты питания способны осуществлять разнообразные воздействия на организм, а в процессе производства любой пищевой продукции происходит вмешательство человека в окружающую природу.

Имеющиеся данные, лишь часть которых была кратко описана в настоящем обзоре, показывают, что есть немало уже доказанных случаев реальных пищевых рисков, связанных с использованием генетически модифицированных организмиов по сравнению с исходными организмами.

Однако в условиях монополизации и производства семенного материала, и его экспертизы одной или несколькими крупными биотехнологическими корпорациями трудно ожидать объективных оценок этих рисков. В результате, проблема «регуляции рисков» может превратиться в проблему «рисков регуляции» (116, 117).

Продукция, содержащая химические и биологические вещества и/или являющаяся источником физических факторов, которые оказывают или могут оказывать вредное воздействие на жизнь и или будущих поколений либо на состояние среды обитания человека, безопасное применение которой обеспечивается гигиеническим регламентированием содержания в продукции указанных веществ и уровней воздействия физических факторов, а также соблюдением установленных регламентов..."

Источник:

"СОГЛАШЕНИЕ О ПОРЯДКЕ ВЗАИМОДЕЙСТВИЯ ПРИ ГИГИЕНИЧЕСКОЙ ОЦЕНКЕ ПОТЕНЦИАЛЬНО ОПАСНОЙ ПРОДУКЦИИ, ИМПОРТИРУЕМОЙ В ГОСУДАРСТВА-УЧАСТНИКИ СОДРУЖЕСТВА НЕЗАВИСИМЫХ ГОСУДАРСТВ"


Официальная терминология . Академик.ру . 2012 .

Смотреть что такое "Потенциально опасная продукция" в других словарях:

    ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения - Терминология ГОСТ Р 54147 2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документа: 3.3.17 активы (asset): Все, что имеет ценность для организации. Определения термина из разных документов: активы 3.2.62 анализ… …

    СП 12-133-2000: Безопасность труда в строительстве. Положение о порядке аттестации рабочих мест по условиям труда в строительстве и жилищно-коммунальном хозяйстве - Терминология СП 12 133 2000: Безопасность труда в строительстве. Положение о порядке аттестации рабочих мест по условиям труда в строительстве и жилищно коммунальном хозяйстве: Аттестация рабочих мест по условиям труда Процедура анализа и… … Словарь-справочник терминов нормативно-технической документации

    Китай - Китайская Народная Республика, КНР, гос во в Центр, и Вост. Азии. Принятое в России название Китай от этнонима кидане (они же китаи) группы монг. племен, покоривших в средние века территорию сев. областей совр. Китая и образовавших гос во Ляо (X… … Географическая энциклопедия

    КИТАЙ. ИСТОРИЯ - Истоки китайской цивилизации. Китай часто сравнивают с обществами, существовавшими в Месопотамии и Египте. Однако присущие Китаю природные особенности и экономические формы отличались от особенностей и форм других восточных обществ. У Китая не… … Энциклопедия Кольера

    Теленовелла - (исп. telenovela; букв. «телевизионная новелла» или «телевизионный роман») один из жанров телевизионных сериалов, классически происходящий из Латинской Америки и являющийся «родственником» мыльной опере (при этом можно отметить, что в… … Википедия

Сегодня деятельность человека связана с применением сложных технологий. Производство и сельское хозяйство повсеместно применяют различные потенциально опасные вещества. Технологические циклы используют различные ядовитые химикаты, атомную энергию. Хозяйственная деятельность человека может приводить к возникновению различных аварий, чрезвычайных ситуаций разного масштаба.

В каждой стране государство и соответствующие службы ведут контроль выполнения всех норм техники безопасности. Существует определенный перечень того, какие объекты относятся к потенциально опасным. Жители каждой области должны знать, к каким последствиям может привести нарушение работы таких предприятий. Зная, как себя правильно вести в чрезвычайной ситуации, можно спасти свою жизнь при возникновении аварии.

Определение

Очень важно знать, . Этот вопрос подробно рассматривается школьной программой. В каждой области, районе, городе есть особый список, в который входят подобные объекты. К ним относятся здания, сооружения, прочие экономические единицы, при аварии на которых возможна гибель людей, порча имущества.

Раньше человечество сталкивалось с катастрофами только природного характера. Сегодня, с развитием экономики, их дополнили также В результате чрезвычайного происшествия могут не только погибнуть или пострадать люди, но и животные и природа.

Чтобы предупредить развитие неблагоприятных последствий, ведется реестр подобных объектов. Специальная комиссия постоянно осматривает их, оценивает полноту выполнения всех требований и норм безопасности. Это позволяет снизить вероятность возникновения аварии, тяжесть последствий чрезвычайной ситуации. Также ведение подобного реестра позволяет предусмотреть наличие всех мер для устранения негативных последствий.

Особенности опасных объектов

Люди должны понимать, находятся от них в непосредственной близости. К таким экономическим единицам относятся территории, на которых расположены здания, сооружения и прочие материальные активы, которые относятся к повышенному уровню ответственности. Также в эту группу входят объекты, на которых одновременно может находиться от 5 тыс. человек и более (определяются на основании проектной документации).

Отнесением тех или иных материальных активов к категории потенциально опасных распоряжается Градостроительный кодекс РФ. К ним относятся технически сложные, опасные или уникальные объекты.

Уровень опасности, которым характеризуются те или иные основные фонды, может быть разным. В нашей стране в непосредственной близости от подобных объектов проживает множество обычных граждан. Больше всего их концентрация определяется в районах с вероятностью выброса в окружающую среду химически опасных веществ. В таких зонах проживает до 54 тыс. человек.

Разновидности

В каждом регионе ведется свой собственный реестр материальных активов, которые относятся к категории потенциально опасных. На это влияет направленность хозяйственной деятельности каждой области. В соответствующей документации регламентируется, какие потенциально опасные объекты расположены в Москве, Уфе, Санкт-Петербурге, Екатеринбурге и прочих крупных и небольших городах РФ.

В соответствии с особенностями развития и протекания аварийной ситуации выделяют 4 категории подобных экономических единиц. Существуют следующие разновидности опасности:

  1. Химическая (ХОО).
  2. Радиационная (РОО).
  3. Взрыво- и пожароопасная (ПВО).
  4. Гидродинамическая (ГДОО).

Масштаб аварии может быть разным. В некоторых случаях чрезвычайная ситуация может принять размер не только областного, но и глобального значения. Поэтому выполнение всех правил безопасности является жизненной необходимостью.

Статистика

Государством ведется определенная статистика, какие потенциально опасные объекты находятся в непосредственной близости от людей. Также частота возникновения аварий на таких предприятиях позволяет сделать руководству таких экономических единиц определенные выводы.

Согласно статистике, в России насчитывается около 12,5 тыс. потенциально опасных объектов. Около 8 тыс. из них относятся к категории пожаро- или взрывоопасных организаций. 3,8 тыс. является химически опасными предприятиями. Всего 0,8 тыс. всех, включенных в реестр, объектов повышенной потенциальной опасности отнесено к категории гидродинамических. Радиационную угрозу несут всего 68 объектов.

Однако при том, что больше всего людей (около 54 тыс. человек) проживает в непосредственной близости к химически опасным предприятиям. Около 7 тыс. граждан РФ живут рядом с объектами гидродинамической, пожароопасной (взрывоопасной) категории. В зоне радиационной потенциальной угрозы находится около 4,5 тыс. человек. Также около 7 тыс. человек живет в незначительном удалении от магистральных трубопроводов. Эти объекты также признаны потенциально опасными.

Химически опасные объекты

Органы власти на местах ведут учет, какие потенциально опасные объекты расположены в Екатеринбурге, Саратове, Москве, Уфе и прочих городах РФ. В зависимости от типа потенциальной опасности подобных организаций, предпринимаются соответствующие действия по предотвращению возникновения аварийной ситуации, устранению ее последствий.

К химически опасным объектам относят объекты материальных фондов, при возникновении аварии на которых может произойти поражение окружающей среды, людей, животных, материальных ценностей химическими веществами. Их содержание в природе в зоне бедствия в этом случае будет превышать допустимый уровень.

Заражение может затронуть приземные слои атмосферы, водные источники, растительность, почву. Причем такие чрезвычайные ситуации могут сопровождаться взрывами и пожарами.

Типовые ХОО

Следует рассмотреть подробнее, какие объекты относятся к потенциально опасным. ОБЖ (основы выделяет ряд предприятий, которые относятся к категории ХОО. Деятельность таких организаций связана с работой при использовании аммиака и хлора.

К числу предприятий, которые потенциально несут химическую угрозу, относятся водоочистительные станции, а также холодильные установки. Также несут подобную угрозу предприятия химической отрасли хозяйствования, нефтеперерабатывающие организации. Сюда относят и нефтехимическую отрасль оборонной промышленности.

Потенциальную угрозу окружающей среде несут трубопроводы, по которым транспортируют ядовитые вещества. Прочие транспортные средства, обеспечивающие перевозку подобных продуктов, также относятся к категории ХОО. Некоторые компоненты, материалы, которые применяют различные предприятия могут не быть химически опасными. Однако в результате взрыва или пожара они вступают в химические реакции. При этом получаются ядовитые вещества, способные нанести значительный ущерб окружающей среде.

Радиационноопасные объекты

Рассматривая, какие предприятия относятся к потенциально опасным объектам , необходимо рассмотреть группу радиационноопасных организаций. Их в нашей стране немного. Однако в случае аварии масштаб катастрофе может стать национальным.

К категории РОО относятся ядерные реакторы, предприятия, применяющие радиационное топливо, а также перерабатывающие В список подобных объектов внесены места хранения радиационных материалов, транспортные средства и коммуникации, по которым их перевозят.

К категории потенциально опасных радиационных объектов относят источники излучения ионизирующего типа. При возникновении аварии на любом из перечисленных выше объектов существует вероятность облучения, радиационного загрязнения окружающей среды. В результате может быть нанесен значительный урон людям, животным, растениям и материальным ценностям.

Типовые РОО

Следует также рассмотреть, какие объекты считаются потенциально опасными в категории радиационной потенциальной угрозы. В первую очередь в реестр РОО вносят атомные станции. Истории известны неоднократные аварии на подобных объектах. Последствия некоторых из них длятся десятилетиями.

Также в категорию РОО входят компании, занимающиеся переработкой и изготовлением ядерного топлива, захоронением отходов после его применения. Сюда принято относить научные и исследовательские организации, которые применяют в своей деятельности радиационные установки. Также одним из видов РОО являются военные объекты и предприятия по производству техники для них.

Опасность, которую несут представленные объекты, может быть разной. Она измеряется количеством радиации, которую в случае аварии может выбросить такое предприятие в окружающую среду. На этот параметр влияет мощность установки, использующая ядерную энергию. Потенциально самая большая опасность сконцентрирована на атомных электростанциях, а также в исследовательских центрах с ядерными установками.

Врыво- и пожароопасные объекты

Следует отметить, что определить, к какому классу относятся потенциально опасные объекты , может специальная комиссия. Часто предприятия несут в себе сразу несколько потенциальных угроз техногенного характера.

К категории пожаро-взрывоопасных предприятий относятся материальные фонды, на которых ведется производство, хранение, применение или транспортировка способных к возгоранию веществ и материалов. Так как факторы, позволяющие отнести ту или иную организацию к представленной категории, отличаются рядом показателей, степень опасности может быть разной.

Все объекты, потенциально несущие пожарную или взрывную угрозу делятся на 5 категорий. Их обозначают буквами русского алфавита. Самыми опасными являются объекты категории А. Наименьшая вероятность возникновения подобной катастрофы принадлежит предприятиям категории Д.

Типовые ПВО

Обращаясь к перечню, какие объекты являются потенциально опасными в категории ПВО, следует рассмотреть все существующие группы подобных организаций. К категории А относятся предприятия газовой, нефтяной, химической промышленности. Они несут самую высокую потенциальную угрозу взрыва или возгорания в случае аварии.

К категории Б принято относить компании, занимающиеся добычей угля, древесной муки, синтетического каучука и сахарной пудры. Меньшую вероятность возникновения пожара или взрыва несут деревообрабатывающие организации. Это могут быть лесопильни, столярные мастерские и т. д. В эту категорию входят склады, на которых хранится масло.

В группу Г вошли предприятия металлургической промышленности. Это также котельные, цеха термической обработки материалов. К категории Д относятся организации, занимающиеся переработкой и хранением холодных, несгораемых материалов.

Гидродинамические опасные объекты

Рассматривая, какие объекты относят к потенциально опасным , следует рассмотреть хозяйственные организации, которые несут гидродинамическую опасность. Такие установки создают разницу между уровнем воды с обеих сторон. Это естественные плотины, гидротехнические сооружения.

Типовые ГДОО

Следует рассмотреть, какие объекты относятся к потенциально опасным с точки зрения гидродинамики. В эту категорию вошли естественные и искусственные плотины, напорные бассейны ТЭС, ГЭС, водоприемники и подпорные стены. В случае возникновения аварии на таком объекте значительные площади могут быть затоплены водой.

Рассмотрев, какие объекты относятся к потенциально опасным, можно сделать вывод о наличии таких предприятий в непосредственной близости от своего жилища, принять меры по предотвращению негативных последствий в случае возникновения опасной ситуации.