Аварии на радиционно (ядерно) опасных объектах и радиоактивное загрязнение окружающей среды. Общие сведения о радиационно (ядерно) опасных объектах, системах безопасности

При работе реакторного и радиохимического производств образуются жидкие, газообразные и твердые радиоактивные отходы. О влиянии таких производств на окружающую среду было известно из опыта работы комбината в г. Челябинске-40 (ПО “Маяк”). Поэтому при проектировании и строительстве ГХК были предусмотрены меры, снижающие это воздействие. Для очистки газоаэрозольных выбросов и технологических вод, загрязненных радионуклидами, были построены специальные очистные сооружения. В 1967 году был введен в эксплуатацию полигон подземного захоронения “Северный”, в который стали удаляться жидкие радиоактивные отходы низкой и средней активности.

Благодаря хорошей работе газоочистных сооружений, влияние комбината на окружающую среду составляет менее одного процента. Выпадение радионуклидов на поверхность земли вблизи комбината меньше, чем естественная убыль за счет распада радионуклидов, накопившихся в почве от испытаний ядерного оружия в атмосфере и в первые годы эксплуатации комбината. Таким образом, идет процесс самоочищения территории.

Охлаждающая вода с двух проточных реакторов АД и АДЭ-1 сбрасывалась в реку Енисей и в штатном режиме эксплуатации, содержание радионуклидов не превышало установленных нормативов. Но в период, когда еще не было еще достаточного опыта, и в условиях гонки вооружений, как и у нас в реку Енисей, так и у американцев в Коламбию попало незначительное количество продуктов распада. С накоплением необходимого опыта и развитием технологий, ситуация вошла в норму. Прямоточные реакторы ГХК были остановлены в 1992 году. С тех пор произошло относительное самовосстановление поймы, и экологическая обстановка заметно улучшилась.

Третий реактор АДЭ-2 - энергетический, имеет замкнутую схему водоснабжения и практически не оказывает заметного влияния на окружающую среду. “Мокрое” хранилище отработавшего ядерного топлива завода РТ-2 также имеет систему замкнутого водоснабжения и его влияние на радиационную обстановку за пределами здания ничтожно мало.

За сбросами и выбросами радионуклидов постоянно велся и ведется дозиметрический контроль, для чего созданы соответствующие службы, как на заводах, так и на комбинате. Еще до пуска первого реактора была создана специальная служба - служба внешней дозиметрии. На базе этой службы организован Радиоэкологический центр (РЦ), в состав которого входит лаборатория радиоэкологического мониторинга.

Лаборатория осуществляет непрерывное наблюдение за уровнем выпадения радионуклидов на земную поверхность, за содержанием их в сбросах и газоаэрозольных выбросах реакторного и радиохимического заводов.

На территории, прилегающей к комбинату, лаборатория производит измерение мощности эквивалентной дозы гамма-излучения, контролирует содержание радионуклидов в почве и растительности, в воде и в донных отложениях реки Енисей. Контролируется содержание радионуклидов в молоке, мясе и овощах, выращенных в зоне влияния ГХК.

Совместно с научными и природоохранными организациями регионального и федерального уровня, регулярно проводятся экспедиции по изучению радиоэкологической обстановки в пойме Енисея, вплоть до Игарки. Многочисленные исследования свидетельствуют о том, что современная радиоэкологическая обстановка в районе воздействия ГХК вполне удовлетворительная и не требует в местах проживания и хозяйственной деятельности населения проведения экстренных реабилитационных мероприятий.

В настоящее время на комбинате внедрена автоматизированная система контроля радиационной обстановки (АСКРО). Датчики радиационного контроля установлены в населенных пунктах, расположенных в зоне влияния ГХК (с. Сухобузимское, с. Атаманово, с. Хлоптуново, с. Кононово и др.).

АСКРО осуществляет непрерывный контроль за мощностью эквивалентной дозы гамма-излучения, за концентрацией альфа-, бета- и гамма излучающих радионуклидов. Система позволяет своевременно обнаруживать превышения установленных пределов и и передавать данные измерений в центр сбора и обработки информации ГХК, а затем автоматически в Ситуационно-кризисный центр (СКЦ) Росатома, а так же в систему Интернет.

Таким образом, АСКРО позволяет непрерывно получать данные о радиационной обстановке, что дает возможность оперативно принимать меры в случае превышения установленных пределов.

ЯДЕРНАЯ И РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ

На горно-химическом комбинате действуют следующие заводы, имеющие в своем составе ядерно- и радиационно-опасные производства:

Реакторный завод (РЗ),
- Радиохимический завод (РХЗ),
- Изотопно-химический завод (ИХЗ).

Основными документами, определяющими безопасность проведения работ с ядерно- и радиационно-опасными материалами являются Правила ядерной безопасности (ПБЯ), технологические регламенты и производственные инструкции.

Контроль за соблюдением этих правил осуществляют инспекторы Госгортехнадзора и специалисты Службы ядерной безопасности комбината.

Ядерная и радиационная безопасность обеспечивается современной технологией, использованием оборудования в ядерно-безопасном исполнении, исключающем возможность возникновения самоподдерживающейся цепной реакции (СЦР), выполнением технических мероприятий и высокой квалификацией специалистов, обслуживающих ядерно- и радиационно-опасные производства.

Для защиты персонала от ионизирующих излучений радиационно-опасное оборудование размещено за надежной биологической защитой в специальных боксах или каньонах и такие производства оснащены системами непрерывного контроля радиационной обстановки с выдачей световых и звуковых сигналов в случае повышения радиационного фона. Предусмотрено многократное дублирование энергообеспечения систем управления, а также аварийной защиты реактора и технологического процесса на РХЗ.

Для аварийного расхолаживания реактора в случае нарушения внешнего электроснабжения в составе ТЭЦ реакторного завода имеется автономный источник на базе авиационных двигателей.

При снижении напряжения или частоты во внешних сетях автономный источник запускается автоматически и обеспечивает электроснабжение ответственных потребителей, от него также запитывается аварийное освещение подземных объектов.

УЧЕТ И КОНТРОЛЬ ЯДЕРНЫХ МАТЕРИАЛОВ

Создание на ГХК системы учета и контроля ядерных материалов (ЯМ) является составной частью Государственной системы учета и контроля ЯМ.

ЯМ - это ядерно-опасные материалы, имеющие значительную стратегическую и материальную ценность, кроме того, это предмет международных обязательств по их нераспространению.

Система учета и контроля ядерных материалов на Горно-химическом комбинате создана с момента ввода в эксплуатацию основных подразделений предприятия. В настоящее время ведутся работы по ее совершенствованию на базе современных технических средств и современных требований.

Система учета и контроля ЯМ ГХК обеспечивает прежде всего решение следующих задач:

Непрерывный учет всех ЯМ, осуществляемый в процессе технологического цикла на всех стадиях переработки и хранения ядерных материалов;

Получение и представление необходимой информации о фактическом наличном количестве ЯМ и предотвращение несанкционированного их использования.

ГХК в рамках российско-американской программы совершенствования систем учета и контроля ЯМ тесно сотрудничает с национальными лабораториями США. Техническое сотрудничество с США позволяет совершенствовать систему Учета и контроля ядерных материалов.

ФИЗИЧЕСКАЯ ЗАЩИТА И ОХРАНА ЯДЕРНЫХ ОБЪЕКТОВ

Охране ядерно- и радиационно-опасных объектов, сохранению ядерных материалов, государственной тайны на ГХК всегда уделялось самое серьезное внимание.

С 1955 года основные объекты ГХК охраняют внутренние войска МВД. Особое внимание уделяется охране ядерных материалов при их транспортировке на комбинат и с комбината.

Для охраны используются современные компьютерные технологии, управляющее и телевизионное оборудование, современные средства сигнализации и связи. При необходимости на место действия оперативно прибывают силы быстрого реагирования.

В целях повышения надежности охраны ядерных объектов, совершенствования систем защиты и учета ядерных материалов, Горно-химический комбинат тесно сотрудничает с ФГУП “Элерон” и национальными лабораториями Министерства энергетики США.

НАУЧНО-ПРОИЗВОДСТВЕННЫЙ ЦЕНТР ГЕОМОНИТОРИНГА

Научно-производтсвенный центр Геомониторинга (НПЦГ), создан в 1997 году.

В работах специалистов НПЦГ формируется оценка устойчивости подземных сооружений комбината и техногенное влияние действующих производств на породы горного массива, в котором они расположены. В этом плане осуществляется контроль геодинамического микросдвижения блоков горных пород друг относительно друга путем создания геодезического полигона на поверхности и маркшейдерского полигона подземных сооружений ГХК.

Созданный в начале 90-х годов на полигоне «Северный» сейсмокомплекс позволяет оценить воздействие на объект региональных и сильных мировых сейсмособытий и одновременно регистрирует техногенную деятельность. Сейсмокомплекс позволил в короткие сроки провести оценку сейсмоопасности промзоны ГХК, микросейсморайонирование отдельных ее площадок и на основе комплексных геофизических и сейсмических работ подтвердить бальность сейсмокарт.

НПЦГ совместно с рядом ведущих научных организаций России с целью создания подземной исследовательской лаборатории по изучению возможностей глубинной геологической изоляции радиоактивных отходов осуществляет организацию комплексных геолого-геофизических исследований Нижне-Канского гранитоидного массива.

В 2008 году НПЦГ был реорганизован в службу главного геолога ГХК, руководителем службы был назначен Р.Р.Хафизов.

ПОЖАРНАЯ БЕЗОПАСНОСТЬ

К обеспечению противопожарной защиты объектов, расположенных в горных выработках, предъявляются самые высокие требования. Пожарная опасность этих объектов обусловлена следующими факторами:
-наличием кабельных трасс большой протяженности, проложенных в шахтах, полуэтажах и коллекторах;
-большим количеством горюче-смазочных материалов (ГСМ), особенно на атомной теплоэлектроцентрали (АТЭЦ);
-значительной площадью полов в производственных, административных и бытовых помещениях, покрытых горючим пластикатом.

Противопожарная защита объектов, расположенных в горных выработках, осуществляется военизированным пожарным отрядом, который находится непосредственно на территории объекта.

Для защиты объектов реакторного, радиохимического заводов и АТЭЦ используются стационарные системы и установки пожаротушения с различными тушащими средствами. Дополнительно в пожароопасные помещения и кабельные сооружения выведены сухотрубы для подачи по ним огнетушащего состава от автомобилей газового тушения пожарной охраны.

На АТЭЦ установлено 9 стационарных лафетных стволов для защиты от пожара подвесного потолка в турбинном зале.

Противопожарное водоснабжение подземных объектов представляет автономную, замкнутую систему (ППВ).

На ППВ 124 пожарных крана оборудованы заземлением для тушения электрооборудования под напряжением 6 кВ.

При отключении основных источников электроснабжения, один насос останется в работе, так как запитан от источника, независимого от внешней системы.

Таким образом пожарная безопасность подземных объектов обеспечивается несколькими независимыми друг от друга системами.

За все время эксплуатации этих объектов не было допущено серьезных возгораний в производственных помещениях.

МЕЖДУНАРОДНОЕ СОТРУДНИЧЕСТВО

Горно-химический комбинат проводит широкий спектр работ в рамках международного сотрудничества.

Основными направлениями международной деятельности являются:
- совершенствование системы учета, контроля и физической защиты ядерных материалов;
- создание в рамках инициативы “Атомные города” рабочих мест для работников, высвобождаемых в связи с сокращением оборонного заказа;
- сотрудничество с Министерством обороны США по взаимному контролю за остановленными реакторами и наработанным диоксидом плутония;
- проведение радиоэкологических исследований в пойме реки Енисей;
- создание замещающего источника теплоснабжения города Железногорска в рамках межправительственного соглашения России и США.

На ГХК накоплен большой опыт по обращению с отработавшим ядерным топливом и радиоактивными отходами. Специалисты комбината совместно с сотрудниками Российских и зарубежных организаций выполняют значительный объем научно-исследовательских работ в этой области деятельности.

СОТРУДНИЧЕСТВО В ОБЛАСТИ ОБРАЩЕНИЯ С РАДИОАКТИВНЫМИ ОТХОДАМИ

В период с 1996 по 2000 гг. были осуществлены первые шаги по обмену технологиями и поставками разработанного на ГХК оборудования для извлечения отходов из емкостей-хранилищ в Северозападную и Ок-Риджскую национальные лаборатории США.

В период с 2000 по 2003 гг. совместно с Сандийскими национальными лабораториями (SNL) США успешно реализован российско-американский проект под наименованием “Демонстрационный центр по извлечению отходов и выводу из эксплуатации емкостей- хранилищ ВАО”. В рамках этого проекта на ГХК были созданы 4 стенда для испытаний оборудования по извлечению пульп и технологий для переработки высокоактивных отходов.

На базе созданных стендов и узлов были продемонстрированы современные технологии обращения с отходами специалистам США с таких площадок как Ок-Ридж, Хэнфорд, Саванна-Ривер, Айдахо.

В результате плодотворного сотрудничества в этой области появились первые заказчики технологий и оборудования, был оценен рынок услуг в США по разработке (поставке) оборудования и технологий обращения с РАО и дезактивации.

Безопасное обращение с отработавшим ядерным топливом (ОЯТ) и радиоактивными отходами (РАО) в настоящее время в большинстве стран считается основной проблемой, ключевым элементом для устойчивого использования атомных электростанций.

Взаимный интерес как для российских, так и зарубежных специалистов заключается в уникальной возможности проведения экспериментальных работ в реальных условиях действующих подземных объектов ГХК для получения исходных данных при проектировании подземных атомных станций и хранилищ радиоактивных отходов.

Сущность и основные понятия радиационной безопасности

радиационная безопасность населения - состояние защищенности от вредного для здоровья воздействия, ионизирующего излучения;

естественный радиационный фон - доза излучения, создаваемая космическим излучением и излучением природных радионуклидов, естественно распределенных в элементах биосферы, пищевых продуктах и организме человека;

техногенно измененный радиационный фон - естественный радиационный фон, измененный в результате деятельности человека;

санитарно-защитная зона - территория вокруг источника ионизирующего излучения, на которой уровень облучения людей в условиях нормальной эксплуатации данного источника может превысить установленный предел дозы облучения для населения. В санитарно-защитной зоне запрещается постоянное и временное проживание лицей, вводится режим ограничения хозяйственной деятельности и проводится радиационный контроль;

зона наблюдения - территория за пределами санитарно-защитной зоны, на которой проводится радиационный контроль;

радиационная авария - потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями персонала, стихийными бедствиями или иными причинами, которые могли привести к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды.

Основным показателем степени потенциальной опасности таких объектов, при прочих равных условиях, является общее количество радиоактивных веществ, находящихся на каждом из них.

Под ядерно-опасными объектами понимаются объекты, имеющие значительные количества ядерных делящихся материалов (ЯДМ) в различных физических состояниях и формах.

К ядерно-опасным объектам, относятся: объекты ядерного топливного цикла - атомные станции различного назначения, предприятия по регенерации отработанного топлива и временному хранению радиоактивных отходов; научно-исследовательские организации, имеющие исследовательские реакторы или ускорители частиц; морские суда с ядерными энергетическими установками, а также хранилища ядерных боеприпасов и полигоны, где проводятся испытания ядерных зарядов.

Из перечисленных объектов наибольшим количеством радиоактивности обладают работающие ядерные реакторы. Чем больше мощность реактора, тем большее количество продуктов деления накапливается в нем.

К радиационно-опасным объектам , относятся предприятия, использующие радиоактивные вещества в небольших количествах и изделия на их основе, в том числе, не представляющие ядерной опасности.

Атомные станции как объекты повышенной радиационной опасности . Атомная энергетика России дает в целом около 11% электроэнергии от ее общего производства. Она включает 9 атомных станций с 29 реакторами.


В процессе работы атомных станций, по мере «выгорания» тепловыделяющих элементов (твэлов), в реакторах накапливается большое количество радиоактивных продуктов деления с различными периодами полураспада: от короткоживущих - несколько часов или суток (аргон-41, йод-131), до долгоживущих - тысячи и миллионы лет (плутоний-239, уран-235).

Радиоактивные продукты распада, содержащиеся в активной зоне реактора, являются основными источниками ионизирующих излучений. Вне активной зоны реактора источниками излучения на АС являются главным образом трубопроводы и оборудование контура теплоносителя.

Для обеспечения надежной работы АС и радиационной безопасности персонала и населения проектами предусматриваются соответствующие системы безопасности.

Под системами безопасности АС в общем случае понимают системы, предназначенные для предупреждения аварий и ограничения их последствий. Различают защитные, локализующие, управляющие и обеспечивающие системы безопасности.

Защитные системы безопасности предназначены для предотвращения (ограничения) повреждений ядерного топлива, оболочек тепловыделяющих элементов, контура теплоносителя и аварий, вызванных нарушением контроля и управления цепной ядерной реакцией деления, а также нарушений теплоотвода из реактора.

Локализующие системы безопасности предназначены для предотвращения или ограничения распространения выделяющихся при авариях радиоактивных веществ внутри станций и выхода их в окружающую среду.

Управляющие системы безопасности предназначены для автоматического включения защитных и локализующих систем безопасности, контроля и управления ими в процессе выполнения.

Обеспечивающие системы служат для снабжения всех систем безопасности энергией и создания необходимых условий для их функционирования. Важнейшими представителями систем безопасности являются дизель-генераторы, которые автоматически запускаются при обесточивании АС в аварийной ситуации.

По техническим причинам возникновения, аварии подразделяются на проектные и запроектные. Авария, исходная причина которой устанавливается действующей нормативно-технической документацией, а обеспечение безопасности при этом предусмотрено проектом АС, называется проектной.

Запроектной называют аварию, развитие которой отклоняется от протекания возможных проектных аварий и обеспечение безопасности при которой не предусмотрено проектом. Их локализация осуществляется проведением различных организационных и инженерно-технических мероприятий, не связанных с системами безопасности на АС.

Таблица I

Международная шкала оценки событий на атомных станциях

Аварии на радиционно (ядерно) опасных объектах и радиоактивное загрязнение окружающей среды

Общие сведения о радиоактивности и радиоактивном загрязнении окружающей среды

Под радиоактивностью понимается самопроизвольное превращение неустойчивых атомных ядер радиоактивных веществ в ядра других радиоактивных веществ, сопровождаемое ионизирующим излучением.

Под радиоактивными веществами понимаются вещества, содержащие изотопы (атомы одного и того же элемента, имеющие разное количество протонов и нейтронов, способных к самопроизвольному распаду).

Радиоактивность, наблюдающаяся у ядер элементов в природных условиях, называется естественной, а у изотопов, полученных в результате ядерных реакций, - искусственной.

Явление радиоактивности используется в экономике, атомной энергетике, медицине, военной сфере. В условиях «мирного атома» осуществляется управляемая реакция деления ядер атомов, с помощью которой достигается нужный результат.

В военной сфере (ядерное оружие) создаются условия неуправляемой цепной реакции с выходом значительного количества энергии различного характера в минимальное время (ядерный взрыв).

Под радиоактивным загрязнением окружающей среды понимается наличие в элементах биосферы радиоактивных веществ, ионизирующее излучение которых создает радиационный фон, превышающий нормы радиационной безопасности населения.

Радиоактивное загрязнение окружающей среды различной степени может происходить при авариях на радиационно (ядерно) опасных объектах, в условиях проведения актов ядерного терроризма, а также в военное время при применении ядерного оружия.

Ионизирующие излучения - квантовые (электромагнитные) или корпускулярные (поток элементарных частиц) излучения, под воздействием которых в среде из нейтральных атомов и молекул образуются положительно или отрицательно заряженные частицы - ионы.

При искусственно вызванном распаде ядер вещества (ядерный взрыв, работа ядерного реактора или ускорителя электронных частиц и т.д.) имеет место также нейтронное излучение.

Число пар ионов, создаваемых ионизирующими излучениями в данной среде, отнесенное к единице расстояния, характеризует ее удельную ионизацию, а расстояние, пройденное от места их образования до места потери частицей избыточной энергии, - длину ее пробега. Эти характеристики зависят от энергии частиц, их размеров, скорости, а также от среды (вещества), в которой они перемещаются.

Виды ионизирующих излучений. Радиоактивные вещества в ходе их распада испускают альфа-, бета-частицы, гамма-излучения и нейтроны.

Альфа-частицы - это тяжелые, положительно заряженные ядра гелия, обладающие высокой ионизирующей, но крайне слабой проникающей способностью. Длина их пробега в воздухе составляет 2,5 см, а в биологической ткани - 31 мкм.

Бета-частицы - электроны, имеющие меньшую, чем у альфа- частиц, ионизирующую, но большую проникающую способность. Длина их пробега в воздухе более 15 см. Вместе с тем они в значительной степени задерживаются одеждой, обувью и кожным эпителием человека.

Гамма- и рентгеновское излучение - электромагнитные излучения высокой энергии и сравнительно слабой ионизирующей способности. Они могут проходить сотни метров в воздухе, проникать через преграды из вещества с большой плотностью, в том числе и через тело человека.

Нейтронное излучение - поток электрически нейтральных частиц - нейтронов, способных вследствие этого беспрепятственно проникать в глубь атомов облучаемого вещества. Достигая ядер атомов, нейтроны либо поглощаются ими, либо рассеиваются на них, теряя значительную часть энергии и скорость. Особенно большое количество энергии (до 50%) нейтроны теряют при столкновении с почти равными им по весу ядрами атомов элементов. Поэтому вещества, имеющие минимальное количество электронов вокруг ядра (вода, графит, азот), широко используются как для защиты от нейтронного излучения, так и для замедления движения нейтронов.

Нейтронный поток, также как и гамма-излучение, обладает большой проникающей способностью через различные вещества и преграды, в том числе и через тело человека. При этом в результате облучения нейтронами атомных ядер химических элементов окружающей среды возникает наведенная радиация, когда последние сами становятся источниками ионизирующих излучений.

К критериям ионизирующего излучения относятся: критерии источника ионизирующего излучения; критерии ионизирующего поля, создаваемого этим источником и характеризующего степень радиоактивного загрязнения окружающей среды, а также дозовые критерии, позволяющие определить возможную степень облучения человека, находящегося в ионизирующем поле.

В целях более системного восприятия критериев ионизирующих излучений они рассматриваются в виде таблицы (табл. 4.1.1).

Эквивалентная доза (Н Т R) используется для определения биологического воздействия на организм человека различных видов излучения, поскольку поглощенная и экспозиционная дозы характеризуют лишь фотонные излучения, в то время как тяжесть нарушений в организме зависит от всех видов излучений и наибольший ущерб его состоянию наносят именно корпускулярные излучения (а-час- тицы и нейтроны). Эквивалентная доза рассчитывается как произведение поглощенной дозы (D ) на взвешивающий коэффициент вида излучения (fV R), составляющий: для фотонов и электронов люТабл и ца 4.1.1

Критерии ионизирующего излучения

Наименование,

буквенный

Единицы измерения

Предельно

допустимые

показатели

Внесистемные

1. Критерии источника излучения

Вид излучения

Фотонное (гамма- и рентгеновское излучение); корпускулярное (а, р, нейтроны, протоны и т.д.)

Активность/)

Мера радиоактивности, определяемая числом радиоактивных распадов в единицу времени

Беккерель

  • 1 Бк = 1 расп/с

Соотношение 1 Ки = 3,7-10 10 Бк

Энергия излучения (энергетический спектр излучения) Е

Разность между суммарной энергией всех заряженных и незаряженных частиц, входящих в данный объем вещества, и суммарной энергией частиц, выходящих из этого объема (для определения наличия техногенных источников загрязнения на фоне естественных источников)

Электрон- вольт (эВ)

Период полураспада

Т иг

Время, в течение которого распадается половина данного количества радионуклидов (для определения продолжительности загрязнения среды):